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1 Algebraicgeometrybasics

Ourfirst topic is the introduction studyof basics forfundamentalobjects for this course algebraicgroups theirLiealgebras
their representations

Inthefirst lecture we will introducealgebraicgroupsthat for
us are affinealgebraic varieties w a compatiblegroupstructure
For this we will need basics aboutaffinevarieties

Let F be an algebraically closedfield ofanycharacteristic

Definition By an embeddedaffine variety we mean a subset
of F forsome n definedbypolynomial equations
Let XCF YCF be embeddedaffinevarieties Amap

9 X Y is calledpolynomial a.k.a amorphism if to fm
F xp tn sit f fully
Thealgebra ofpolynomial functions F X consists of

polynomialmaps X F w usual addition andmultiplication
functions



As usual in Geometry we shouldtry to viewgeometricobjects
in a coordinatefreeway Foraffinevarieties thismeansirrespectiveof an embedding into F can bedone as follows

1 Set I x fe F x nl flx o an ideal s t I x IFN We

have F F x xD I x so F x is an F algebra w o nonzero
nilpotentelements fixedfinite collectionofgenerators X x IX
i 1 nl Conversely to a finitelygeneratedcommutative F algebra
A w o nontevenilpotentelements we assign embedded affine variety
C F w F1 7 A once we choose ngenerators in A the choice of
generators gives P F x Xn A X 5 If a so feker
ii Weget an algebra homomorphism F Y F

gog P 9 y I x fit I x i t m Theassignment
9 9 defines a bijection

morphisms X Y Home
neg
FLY F13

4
al ids idea for P y 4 y z

ii allows us to talk about abstract affine varieties X They
correspond to fingenerated F algebras w o nilpotentelements
Thechoiceofgenerators corresponds to an embeddingofX into
some F but we view irrespective of an embedding The
notion of a morphism still makes sense in this setting

Here are two important constructions
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1 Let Xbe an affinevariety feF ThenXp xeX f x 0

is an affine variety w F Xp F f
2 Let X Y be affine varieties Then XY is also an affine

variety w F X g F Y F XxY If g xy f xg y

Thefollowingexample of thenotionsappearingabove is of
crucial importance for us

Example Considerthegroup Gln AEMat F ILetAte
By 1 it's an affine variety w F Gln F xijli.jo n Edet
By 2 GlnGln is also an affinevariety Let
m Gln xGL Gln AB AB betheproductmap
It's a morphism w m givenby LetAB LetA Let B

m x j EgX'in Xjr m Let
1 Let Let2

the superscript in the r.h.s.is the ofcopyof FGL
Similarly the inversionmap i CL Gln I A A is a

morphism

Rem A subset X in an affinevariety Y is calledZariski
closed if it can be definedbypolynomial equations such
subsets are indeedtheclosedsubsets in a topology the
Zariskitopology Note that X is again an affine variety The
homomorphism it F Y FCX corresponding to i X Y is

surjective exercise
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2 Algebraicgroups theirrepresentations
2 1 Affinealgebraicgroups
Definition

By an affine algebraicgroup G we mean an affinevarietyequippedw morphisms m GG G multiplication i C G inversion
satisfying axioms of a group

Examples of algebraicgroups
c Gln thegenerallineargroup seeExample in Sect
Here's a coordinate freeway to thinkaboutthisgroup If V is

an n dimensional vectorspace we can talk about thegroupGLU
of invertible linearmaps V A choiceof a basis in V identifies
GLU w Gln

Toget more examples noticethat everyZariskiclosed
givenbypolynomialequations subgroup G in an algebraicgroup
G an algebraic subgroup is an algebraicgroup on its own

m GG G is a morphism thecomposition G G G
G is a morphism hence exercise G G is a morphism

1 Sln AEGL LetA I is an algebraicsubgroupofGln
as it's givenby a singlepolynomialequation This is thespecial
lineargroupAndsince Let is independentof the choice of a basis

Jan
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2 AssumecharF 2 Set On AE Ln AAT I The

matrixentriesofAATare quadratic polynomials in thoseofA so On is
an algebraic subgroup of Gln
More conceptually let B be a non degeneratesymmetricform

on a vector space V of him n all theseformshave an
orthonormal basis so there's no differencebetweenthem

Then we can consider VB ge v Bgugu Bluv u rev

A choice of an orthonormal basisforB identifies YB w On

Thegroup On or VBI iscalledtheorthogonalgroup
Note that Let A 1 for Aeon Set 59 Aeon

LetA 13 This is also an algebraicsubgroupcalledthe special
orthogonalgroup

3 Similarly for a non degenerate skew symmetricform w

on a finite dimensional vector space V thenautomatically dimV
iseven we can similarly consider the symplecticgroup
Sp Vw Ege LCV wgugu w u v u vev One can find
a basis V VanEV s.tw Vivj ISi j any

where wehave a
is n Let J be thematrix of w inthisbasis

J so that Sp Vw AeClan ATA 5 Span

The
groups in Examples 0 3 are called classical They are

extremely important

T



4 The subgroups of uppertriangular upper uni

triangular anddiagonal diagz tn matrices in
Chn are algebraic

5 Themultiplicativegroup F GL F oftendenotedbyGm and
theadditivegroup F t Ga are algebraicgroups

Exercise Theproduct of two algebraicgroups is algebraic

2 2 Homomorphisms representations

Let GRH be algebraicgroups

Definition 1 Agroup homomorphism p H is called an
algebraicgroup homomorphism if it's a morphismof varieties

Example Let GCGbe an algebraic subgroup Theninclusionmap
is an algebraicgroup homomorphism

Rem The composition ofalgebraicgrouphomomorphisms is also an
algebraic group homomorphism

Definition 2 Let Vbe a finite dimensionalspace By a rational
representation of G in V we mean an algebraicgrouphomomorphismG LIV
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Studying rational representations is one ofimportantgoalsof
this course Here's an equivalent condition ofbeing rational

Important exercise Let pG GLU be some representation For

αEV VEV definethematrix coefficient Ca F by
Caog α go

Then p is rational Caof F G αeV we V

Hint if UnEV is a basis 4 aneV is thedualbasisthen

p CLU Cn is givenby
iiimet is ap Gln is e morphism the c

morphism

Examples of rational representations
a Anyalgebraic subgroup Gc Ln comes w a tautologicalrationalrepresentation in F Canapplythis to G GlnSlnSonSpn
1 Usualoperations w representationspreservetherationality
1 if UCV is Gstable then the representationsof G in U VU

are rational if Vis theirmatrix coeffs are subsets ofthesefor V
ii Forsimilar reasons if V V are rational C representations
then so is V V
iii V V V is rational indeed ifpi G GLVi arethe
corresponding representations thenthe representation in V Visgiven
by pg pg pg hencefor α evil vie V we have

Ca 22 u v2 CapurCaor E FG
Combining this w i we see that the representations in Sym V



A V7 are rational

iv If V is a rational representation of G then so is V
indeed p G GL V is the composition of p G GL V

isomorphismGLV V given after choosing a basis bygog't
2 Suppose char Fpro In this case themap xtext is an

automorphism ofthe field F the Frobenius automorphism Themap
Fr Gln F Gln F ay aig is therefore analgebraicgroup
homomorphism It's an automorphism of an abstractgroup butnotof
an algebraicgroup exercise

Nowsupposep G Gln be a rational representation Then it's
Frobeniustwist p Frop CL isalso rational

Premiumexercise realizep using i Xiii ofExample 1

Rem on terminology For G Gln F one talksaboutthe
polynomialrepresentations Caulg is apolynomial in thematrixentriesof

g Eg operations i iii in Example 1 applied to the

tautologicalrepresentation in F give polynomial representations while in
does not Thename rational is used 6c weallow Let in the
denominator

81


