

Lec 2: algebraic groups & Lie algebras II

0) Overview

- 1) Tangent spaces in Algebraic geometry.
- 2) Structures on the tangent space at 1 of an algebraic group

0) Overview

As before, \mathbb{F} denotes an algebraically closed field.

Algebraic (or Lie) groups are non-linear objects (defined by non-linear equations). A basic paradigm to study such objects is linearization.

In our case we seek to replace an algebraic group G with the tangent space $T_e G$, where $e \in G$ is the unit. A discussion of such tangent spaces is the 1st topic of this lecture.

Generally, tangent spaces are just vector spaces $/ \mathbb{F}$. However, $T_e G$ comes with additional structure(s). The first (and essentially the only in the case when $\text{char } \mathbb{F} = 0$) was observed already by Sophus Lie (1870's): the Lie bracket. When $\text{char } \mathbb{F} = p$, there's one more structure - the restricted p th power map discovered by Jacobson (1930's). In this lecture we will start our discussion of these structures.

1) Tangent spaces in Algebraic geometry.

1.1) Basics on tangent spaces

Let X be an affine algebraic variety $/ \mathbb{F}$ & $A = \mathbb{F}[X]$ denote the algebra of polynomial functions on X . Pick $x \in X$.

Definition: 1) An α -derivation of A is an \mathbb{F} -linear map $\xi: A \rightarrow \mathbb{F}$ satisfying the following version of Leibniz identity:

$$(L) \quad \xi(fg) = f(\alpha) \xi(g) + g(\alpha) \xi(f).$$

2) Note that the α -derivations form a vector subspace in the space A^* of linear functions $A \rightarrow \mathbb{F}$. The space of α -derivations is denoted by $T_\alpha X$ and is called the tangent space of X at α .

Here is a calculation of $T_\alpha X$. Let $A = \mathbb{F}[x_1, \dots, x_n]/(f_1, \dots, f_m)$ & write \bar{x}_i for $x_i + (f_1, \dots, f_m) \in A$, these are generators of A . If $\xi \in T_\alpha X$ & $g \in \mathbb{F}[x_1, \dots, x_n]$, then the usual rule of differentiation applies:

$$(1) \quad \xi(g(\bar{x}_1, \dots, \bar{x}_n)) = \sum_{i=1}^n [\partial_i g](\alpha) \xi(\bar{x}_i), \text{ where } \partial_i := \frac{\partial}{\partial x_i}.$$

So we get a map

$$\psi: T_\alpha X \rightarrow \mathbb{F}^n, \quad \xi \mapsto \xi((\bar{x}_i))_{i=1}^n.$$

By (1), ψ is injective, also it's linear. Now plug $g = f_j$ to (1). The l.h.s is $\xi(f_j) = 0$ hence the image of ψ is contained in

$$(2) \quad \left\{ (a_1, \dots, a_n) \mid \sum_{i=1}^n [\partial_i f_j](\alpha) a_i = 0 \forall j \right\} \subset \mathbb{F}^n.$$

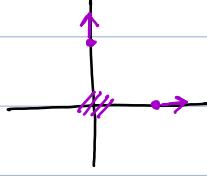
In fact, ψ is an isomorphism $T_\alpha X \xrightarrow{\sim} (2)$: $\forall (a_1, \dots, a_n) \in (2)$, the map $g(\bar{x}_1, \dots, \bar{x}_n) \mapsto \sum_i [\partial_i g](\alpha) a_i$ is well-defined (doesn't depend on the choice of g) and is automatically an α -derivation (exercise).

An identification of $T_\alpha X$ w. (2) is an algebro-geometric version of a computation of the tangent space of an embedded submanifold in \mathbb{R}^n .

Example: Let $X = \{(x_1, x_2) \in \mathbb{F}^2 \mid x_1 x_2 = 0\}$. Then for $f = x_1 x_2$, we have

$$(\partial_1 f, \partial_2 f) = (x_2, x_1). \quad \text{So}$$

$$T_\alpha X = \begin{cases} \{(*, 0)\} \text{ if } \alpha_1 \neq 0 \ (\Rightarrow \alpha_2 = 0) \\ \{(0, *)\} \text{ if } \alpha_2 \neq 0 \ (\Rightarrow \alpha_1 = 0) \\ \mathbb{F}^2 \quad \text{if } \alpha_1 = \alpha_2 = 0 \end{cases}$$



Remarks: i) One can completely describe $T_\alpha X$ as a subspace of A^* . Let $\mathfrak{m}_\alpha = \{f \in A \mid f(\alpha) = 0\}$, the maximal ideal of α . Then to (L), for $\zeta \in T_\alpha X$ we have $\zeta(1) = 0$ (use $1 = 1 \cdot 1$) & $\zeta(fg) = 0 \ \forall f, g \in \mathfrak{m}_\alpha$ $\Rightarrow \zeta(\mathfrak{m}_\alpha^2) = 0$. Conversely, let $\zeta \in A^*$ be s.t. $\zeta(1) = 0$ & $\zeta(\mathfrak{m}_\alpha^2) = 0$. We claim that ζ satisfies (L) ($\Leftrightarrow \zeta \in T_\alpha X$). For this note that $\zeta(1) = 0 \Rightarrow (L)$ holds if f or $g \in \mathbb{F}$ & $\zeta(\mathfrak{m}_\alpha^2) = 0 \Rightarrow (L)$ for $f, g \in \mathfrak{m}_\alpha$. Now we use that $\forall f \in A \Rightarrow f = f(\alpha) + (f - f(\alpha))$ & $f - f(\alpha) \in \mathfrak{m}_\alpha$ & similarly for g . So

$$(3) \quad T_\alpha X = \{\zeta \in A^* \mid \zeta(1) = 0 \ \& \ \zeta(\mathfrak{m}_\alpha^2) = 0\}$$

ii) (2) shows $T_\alpha \mathbb{F}^n = \mathbb{F}^n \ \forall \alpha \in \mathbb{F}^n$. This identification, in fact, is independent of the choice of coordinates. Namely, let V be a vector space, $\alpha \in V$ & $v \in V$. We assign $\zeta_v \in T_\alpha V$ (the derivative in the direction of v) by: $\zeta_v(f) = \frac{1}{t} (f(\alpha + tv) - f(\alpha))|_{t=0}$. This gives an isomorphism $V \rightarrow T_\alpha V$, $v \mapsto \zeta_v$ (exercise). $\in \mathbb{F}[V][t]$

1.2) Tangent maps

Let $\varPhi: X \rightarrow Y$ be a morphism of affine varieties \hookrightarrow the pullback homomorphism $\varPhi^*: \mathbb{F}[Y] \rightarrow \mathbb{F}[X]$, hence the dual map

$$\varPhi_*: \mathbb{F}[X]^* \rightarrow \mathbb{F}[Y]^*, \quad \langle \varPhi_*(\delta), g \rangle = \langle \delta, \varPhi^*(g) \rangle \quad (g \in \mathbb{F}[Y], \delta \in \mathbb{F}[X]^*)$$

Lemma: $\varphi_*: \mathbb{F}[X]^* \rightarrow \mathbb{F}[Y]^*$ restricts to $T_\alpha X \rightarrow T_{\varphi(\alpha)} Y$.

Proof: Let $\gamma \in T_\alpha X$.

Thx to (3), it suffices to prove $[\varphi_*(\gamma)](1) = 0$ (this is **exercise**) & $[\varphi_*(\gamma)](m_{\varphi(\alpha)}^k) = 0$. But $[\varphi_*(\gamma)](m_{\varphi(\alpha)}^k) = \gamma(\varphi^*(m_{\varphi(\alpha)}^k))$. We claim that $\varphi^*(m_{\varphi(\alpha)}^k) \subset m_\alpha^k \nsubseteq 0$. For $k=1$: $g \in m_{\varphi(\alpha)} \Leftrightarrow g(\varphi(\alpha)) = 0 \Leftrightarrow [\varphi^*g](\alpha) = 0 \Leftrightarrow \varphi^*g \in m_\alpha$ & the containment follows. The case $k \geq 1$ reduces to $k=1$ b/c φ^* is an algebra homomorphism. \square

Definition: This map $T_\alpha X \rightarrow T_{\varphi(\alpha)} Y$ is called the **tangent map** of φ at α and is denoted $T_\alpha \varphi$.

Important exercise 2 (functoriality a.k.a. chain rule). If $\psi: Y \rightarrow Z$ be another morphism, then $T_\alpha(\psi \circ \varphi) = T_{\varphi(\alpha)} \psi \circ T_\alpha \varphi$.

Now we discuss properties of tangent maps in special cases.

I) Let $X \subset Y$ be Zariski closed & $i: X \hookrightarrow Y$ denote the inclusion. Then $\forall \alpha \in X \Rightarrow T_\alpha i: T_\alpha X \rightarrow T_\alpha Y$ is injective. This is because $i^*: \mathbb{F}[Y] \rightarrow \mathbb{F}[X]$ is surjective (Remark in Sec 1 of Lec 1), hence $i \circ i^*: \mathbb{F}[X]^* \rightarrow \mathbb{F}[Y]^*$ is injective \Rightarrow its restriction $T_\alpha i$ is so.

II) Let $f \in \mathbb{F}[X]$ be s.t. $f(\alpha) \neq 0$. Let $j: X_f \hookrightarrow X$ be the inclusion.

We claim that $T_\alpha j: T_\alpha(X_f) \xrightarrow{\sim} T_\alpha X$. Indeed, $\forall \gamma \in T_\alpha X$ has unique preimage given by the "quotient rule":

$$f^{-n}g \mapsto f(\alpha)^{-2n} (j(g)f(\alpha)^n - g(\alpha)j(f^n)).$$

The proof is an *exercise*.

Finally, consider the following situation: let $\varphi = (f_1, \dots, f_m) : \mathbb{F}^n \rightarrow \mathbb{F}^m$ be a morphism. Let $\alpha \in \mathbb{F}^n$ & $\beta = \varphi(\alpha)$. We want to compare $\ker T_\alpha \varphi = \{(a_1, \dots, a_n) \mid \sum_i [f_i, f_j](\alpha) \cdot a_j = 0\}$ & $T_\alpha \varphi^{-1}(\beta)$. One can show (*exercise*) that $T_\alpha \varphi^{-1}(\beta) \subset \ker T_\alpha \varphi$ but the inclusion can be strict (e.g. take $\varphi(x) = x^2$ & $\alpha = 0$ - a note for experts: we view $\varphi^{-1}(\alpha)$ as a subvariety not a subscheme). We need a sufficient condition for $T_\alpha \varphi^{-1}(\beta) = \ker T_\alpha \varphi$ as the r.h.s. is easier to compute. The following may be viewed as an Algebro-geometric version of the implicit function (regular value) theorem.

Fact (see Sec 5.5 in [H] for a related statement)

If $T_\alpha \varphi$ is surjective, then $T_\alpha \varphi^{-1}(\beta) = \ker T_\alpha \varphi$

1.3) Spaces $T_e G$ for classical groups

Recall the classical groups $G = GL(V)$, $SL(V)$, $O(V, B)$, $Sp(V, \omega)$, where V is a finite dimensional vector space over \mathbb{F} & B, ω are nondegenerate symmetric & skew-symmetric forms on V (that are only considered if $\text{char } \mathbb{F} \neq 2$). See Section 2.1 in Lec 1. Our goal now is to compute the tangent spaces $T_e G$.

Example 0: To compute $T_e G$ for $G = GL(V)$ we set $X = \text{End}(V)$,

the vector space of endomorphisms of V & $f = \det \in \mathbb{F}[X]$. By

Remark in Sec 1.1, $T_e X$ is naturally identified with $\text{End}(V)$ & by II) in Sec 1.2, $T_e G \xrightarrow{\sim} T_e X = \text{End}(V)$. In a basis: $T_e GL_n(\mathbb{F}) = \text{Mat}_n(\mathbb{F})$. We will write $gl(V)$ (or $gl_n(\mathbb{F})$) for $T_e G$.

For other three groups G , we have $G \subset GL(V)$, Zariski closed, so $T_e G \subset T_e GL(V) = gl(V)$ is a subspace, I) in Sec 1.2. To determine these subspaces, we use Fact in Sec 1.2.

Example 1 $SL(V) \subset \text{End}(V)$ is $\varphi^{-1}(1)$ for $\varphi = \det: \text{End}(V) \rightarrow \mathbb{F}$. To compute $T_e \varphi$ it's convenient to use a basis in V to identify $\text{End}(V)$ w. $\text{Mat}_n(\mathbb{F})$. The map $T_e \varphi$ sends $(a_{ij}) \in T_e \text{Mat}_n(\mathbb{F}) = \text{Mat}_n(\mathbb{F})$ to the linear (in a_{ij}) term in $\det((\delta_{ij} + a_{ij}))$, where δ_{ij} = Kronecker symbol. Using the initial formula for \det we see that this term is $\sum_{i=1}^n a_{ii} = \text{tr}((a_{ij}))$. The map $\text{tr}: \text{Mat}_n(\mathbb{F}) \rightarrow \mathbb{F}$ is surjective, so $T_e G = T_e \varphi^{-1}(1) = [\text{Fact}] = \ker \text{tr}$. This subspace is denoted by $SL_n(\mathbb{F})$ (or $SL(V)$ in the basis-free setting).

Example 2: $G = O_n(\mathbb{F})$. Note that AA^T is symmetric $\forall A \in \text{Mat}_n(\mathbb{F})$. So we can consider $\varphi: A \rightarrow AA^T: \text{Mat}_n(\mathbb{F}) \rightarrow \{\text{symmetric matrices}\} \Rightarrow G = \varphi^{-1}(I)$. The map $T_e \varphi$ sends $\xi \in \text{Mat}_n(\mathbb{F}) = (T_e \text{Mat}_n(\mathbb{F}))$ to the linear in ξ term of $(I + \xi)(I + \xi^T)$, which is $\xi + \xi^T$. Since $\text{char } \mathbb{F} \neq 2$, the map $\xi \mapsto \xi + \xi^T$ is surjective (exercise - restrict to upper triangular matrices). So $T_e G = \ker T_e \varphi = \{ \xi \in \text{Mat}_n(\mathbb{F}) \mid \xi^T = -\xi \}$ to be denoted by $SO_n(\mathbb{F})$.

We also could (and should) view this basis-free. We get

$$T_e O(V, B) = \{ \xi \in \mathfrak{gl}(V) \mid B(\xi u, v) + B(u, \xi v) = 0 \ \forall u, v \in V \} =: \mathfrak{so}(V, B)$$

- the space of operators skew-symmetric w.r.t. B .

Exercise: $T_e \text{Sp}(V, \omega) = \{ \xi \in \mathfrak{gl}(V) \mid \omega(\xi u, v) + \omega(u, \xi v) = 0 \ \forall u, v \in V \} =: \mathfrak{sp}(V, \omega)$.

2) Structures on the tangent space at 1 of an algebraic group

For $\xi, \eta \in \mathfrak{gl}_n(\mathbb{F})$ we write $[\xi, \eta] := \xi\eta - \eta\xi$. For an algebraic subgroup $G \subset GL_n(\mathbb{F})$ we write \mathfrak{g} for $T_e G$, as mentioned in Sec 1.3 this is a subspace in $\mathfrak{gl}_n(\mathbb{F})$.

The following theorem is the main result for this lecture.

Thm: 1) \mathfrak{g} is closed under $[\cdot, \cdot]$.

1') If $\text{char } \mathbb{F} = p > 0$, then \mathfrak{g} is also closed under $\xi \mapsto \xi^p$.

Let $H \subset GL_m$ be another algebraic group & $\Phi: G \rightarrow H$ be an algebraic group homomorphism & $\varphi = T_e \Phi$. Then

2) $[\varphi(\xi), \varphi(\eta)] = \varphi([\xi, \eta]) \ \forall \xi, \eta \in \mathfrak{g}$.

2') If $\text{char } \mathbb{F} = p > 0$, then $\varphi(\xi^p) = \varphi(\xi)^p \ \forall \xi \in \mathfrak{g}$.

Example (of 1), 1'). Let $G = SL_n(\mathbb{F}) \subset GL_n(\mathbb{F})$ so that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{F}) = \{ \xi \in \text{Mat}_n(\mathbb{F}) \mid \text{tr } \xi = 0 \}$. It's closed under $[\cdot, \cdot]$ b/c $\text{tr}(\xi\eta) = \text{tr}(\eta\xi) \ \forall \xi, \eta \in \text{Mat}_n(\mathbb{F})$ (exercise - on matrix multiplication).

To show that \mathfrak{g} is closed under \cdot^p when $\text{char } \mathbb{F} = p$, it's suffici-

ent to prove $\text{tr}(\xi^p) = [\text{tr}(\xi)]^p \forall \xi \in \text{Mat}_n(\mathbb{F})$. For this we use the fact that for a matrix A w. e-values $\lambda_1, \dots, \lambda_n$ (w. multiplicities) we have $\text{tr}(A) = \sum_i \lambda_i$. Now let $\lambda_1, \dots, \lambda_n$ be e-values of ξ so that $\lambda_1^p, \dots, \lambda_n^p$ are e-values of ξ^p . So

$$[\text{tr}(\xi)]^p = \left(\sum_i \lambda_i\right)^p = [\text{char } \mathbb{F} = p \Rightarrow \lambda \mapsto \lambda^p \text{ is field homomorphism}] \\ = \sum_i \lambda_i^p = \text{tr}(\xi^p).$$

Exercise: Prove (1) & (2) for SO & Sp .

Note that (2) & (2') show, in particular, that the operations $[\cdot, \cdot]$ and \cdot^p are well-defined on \mathcal{G} , i.e. do not depend on the embedding $\mathcal{G} \hookrightarrow \text{GL}_n(\mathbb{F})$. Moreover, we have the following result that we will (partially) prove later in the course.

Fact: Every affine algebraic group is isomorphic to an algebraic subgroup of GL_n

Thanks to this Fact, we don't need \mathcal{G} (& H) to be embedded into GL_n .