

Lec 3: algebraic groups & Lie algebras III

1) Distribution algebras

1) Distribution algebras

1.0) Introduction.

Let \mathbb{F} be an algebraically closed field, $G \subset GL_n(\mathbb{F})$ algebraic subgroup & $g = T_e G \subset \text{Mat}_n(\mathbb{F})$, the tangent space at the unit e . We want to understand additional structures on g . In Lec 2, Sec 2, we stated:

Thm: 1) g is closed under $[\cdot, \cdot]$: $\xi, \eta \in g \Rightarrow [\xi, \eta] = \xi\eta - \eta\xi \in g$.

1') If $\text{char } \mathbb{F} = p > 0$, then g is also closed under $\xi \mapsto \xi^p$.

Let $H \subset GL_m$ be another algebraic subgroup & $\Phi: G \rightarrow H$ be an algebraic group homomorphism & $\varphi = T_e \Phi$. Then

2) $[\varphi(\xi), \varphi(\eta)] = \varphi([\xi, \eta]) \quad \forall \xi, \eta \in g$.

2') If $\text{char } \mathbb{F} = p > 0$, then $\varphi(\xi^p) = \varphi(\xi)^p \neq \xi \in g$.

Today we prove this theorem. First, to G we assign an associative algebra $(D(G), *)$ of "distributions on G supported at e " in a functorial way (meaning, in particular, that Φ gives rise to an algebra homomorphism $\Phi_*: D(G) \rightarrow D(H)$) & s.t. g is naturally a subspace in $D(G)$. Then we show that for $\xi, \eta \in g \subset D(GL_n)$, we have $\xi * \eta - \eta * \xi = [\xi, \eta]$, $\xi^{*p} = \xi^p \in g$.

This observation, the functoriality of $D(G)$ & a few other things will allow us to prove the theorem.

1.1) Space of distributions

First we consider a general situation: X is an affine variety over \mathbb{F} , $A = \mathbb{F}[X]$, $\alpha \in X$, $m_\alpha = \{f \in A \mid f(\alpha) = 0\}$, the max. ideal of α .

By a distribution on X supported at α we mean any element $\delta \in A^*$ s.t. $\exists k > 0 \mid \delta(m_\alpha^k) = 0$, i.e. $\delta \in (A/m_\alpha^k)^* \subset A^*$.

All distributions supported at α form the subspace

$$\mathcal{D}_\alpha(X) := \bigcup_{k \geq 0} (A/m_\alpha^k)^* \subset A \quad \text{ascending chain of subspaces}$$

In particular, $T_\alpha X = \{\delta \in A^* \mid \delta(1) = \delta(m_\alpha^2) = 0\} \subset \mathcal{D}_\alpha(X)$.

Example: $X = \mathbb{F}$, $\alpha = 0$. Then $A = \mathbb{F}[x]$, $m_\alpha = (x)$, $A/m_\alpha^k = \text{Span}_{\mathbb{F}}(1, \dots, x^{k-1})$

The space $\mathcal{D}_0(\mathbb{F}) = \bigcup_{k \geq 0} (A/m_\alpha^k)^*$ has basis $\delta^{(i)}$, $i \in \mathbb{N}_{\geq 0}$, given by

$$\delta^{(i)}(x^j) = \delta_{i,j} \quad (\text{Kronecker symbol})$$

Now let $\varphi: X \rightarrow Y$ be a morphism, $\varphi^*: \mathbb{F}[Y] \rightarrow \mathbb{F}[X]$ be the corresponding homomorphism & $\varphi_*: \mathbb{F}[X]^* \rightarrow \mathbb{F}[Y]^*$ be its dual map.

Lemma: $\varphi_*(\mathcal{D}_\alpha(X)) \subset \mathcal{D}_{\varphi(\alpha)}(Y)$

Proof: as we've seen in the proof of Lemma in Sec. 1.2 of Lec 2, $\varphi^*(m_{\varphi(\alpha)}^k) \subset m_\alpha^k$. So for δ vanishing on m_α^k we have $\langle \varphi_*(\delta), f \rangle = \langle \delta, \varphi^*(f) \rangle = 0 \nmid f \in m_{\varphi(\alpha)}^k$. \square

1.2) Group case

Now let G be an algebraic group & $\alpha = e \in G$. Write $\mathcal{D}(G)$ for $\mathcal{D}_e(G)$. There's a map $*: \mathcal{D}(G) \times \mathcal{D}(G) \rightarrow \mathcal{D}(G)$ defined as follows.

Let $\mu: G \times G \rightarrow G$ denote the product map. It gives rise to the

pullback homomorphism $\mu^* : \mathbb{F}[G] \rightarrow \mathbb{F}[G \times G] = \mathbb{F}[G] \otimes \mathbb{F}[G]$.

For $\delta_1, \delta_2 \in \mathcal{D}(G)$ define their convolution $\delta_1 * \delta_2 \in \mathbb{F}[G]^*$ by

$$[\delta_1 * \delta_2](f) = [\delta_1 \otimes \delta_2](\mu^*(f)),$$

here $\delta_1 \otimes \delta_2 : \mathbb{F}[G] \otimes \mathbb{F}[G] \rightarrow \mathbb{F}$ is described by $[\delta_1 \otimes \delta_2](f_1 \otimes f_2) = \delta_1(f_1) \delta_2(f_2)$.

Example cont'd: Let $G = \mathbb{G}_a (= (\mathbb{F}, +)) \Rightarrow \mu(x, y) = x + y$. Identifying $\mathbb{F}[G \times G]$ w. $\mathbb{F}[x_1, x_2]$ (w. $x_1 = x \otimes 1 \& x_2 = 1 \otimes x$), we have $\mu^*(f) = f(x_1 + x_2)$ $\forall f \in \mathbb{F}[G] = \mathbb{F}[x]$. We want to compute $\delta^{(i)} * \delta^{(j)}$.

$$\delta^{(i)} * \delta^{(j)}(x^k) = \delta^{(i)} \otimes \delta^{(j)}(\mu^*(x^k)) = \delta^{(i)} \otimes \delta^{(j)}((x_1 + x_2)^k) = [\text{coeff. of } x_1^i x_2^j \text{ in } (x_1 + x_2)^k] = \delta_{i+j, k} \binom{i+j}{i} \Rightarrow \delta^{(i)} * \delta^{(j)} = \binom{i+j}{i} \delta^{(i+j)}$$

This computation allows to realize $\mathcal{D}(\mathbb{G}_a)$ as follows: consider the subgroup $B = \text{Span}_{\mathbb{Z}} (\delta^i / i!) \subset \mathbb{Q}[\delta]$. It's a subring. We identify $\mathcal{D}(\mathbb{G}_a)$ w. $\mathbb{F} \otimes_{\mathbb{Z}} B$ via $\delta^{(i)} \leftrightarrow 1 \otimes (\delta^i / i!)$. In particular, if $\text{char } \mathbb{F} = 0$, then $\mathcal{D}(\mathbb{G}_a) \cong \mathbb{Q}[\delta]$, while in case of $\text{char } p$ we get a more complicated, in fact, infinitely generated algebra.

Note that $\mathbb{F} = \mathbb{F}$ embeds into $\mathcal{D}(\mathbb{G}_a)$ as $\mathbb{F} \delta^{(1)}$.

Premium exercise/example. Here we compute $\mathcal{D}(\mathbb{G}_m)$. Consider the subring $C = \text{Span}_{\mathbb{Z}} ((\delta_i) \mid i \geq 0) \subset \mathbb{Q}[\delta]$, where $(\delta_i) = \frac{\delta(\delta-1)\dots(\delta-i+1)}{i!}$

Then $\mathcal{D}(\mathbb{G}_m) \xrightarrow{\sim} \mathbb{F} \otimes_{\mathbb{Z}} C$. Hint: $\mathcal{D}(\mathbb{G}_m)$ has basis δ_i ($i \in \mathbb{Z}$), where $\delta_i((x-1)^j) = \delta_{ij}$. Then $\delta_i \leftrightarrow 1 \otimes (\delta_i)$.

Here's a general result about $\mathcal{D}(G)$ that we are going to use in the proof of the main theorem.

Proposition: 0) $\mathcal{D}(G) * \mathcal{D}(G) \subset \mathcal{D}(G)$

1) $(\mathcal{D}(G), *)$ is an associative unital algebra w. unit ε given by

$$\varepsilon|_{m_e} = 0 \text{ & } \varepsilon(1) = 0.$$

2) If $\phi: G \rightarrow H$ is an algebraic group homomorphism, then $\phi_*: \mathcal{D}(G) \rightarrow \mathcal{D}(H)$ is a unital algebra homomorphism.

Proof: Set $A = \mathbb{F}[G]$, $m = m_e \subset A$

0) Let $\delta_i \in (A/m)^{k_i}$ ($i=1,2$). We claim $[\delta_1 * \delta_2](f) = 0 \nabla f \in m^{k_1+k_2}$, this will imply 0). By definition, $[\delta_1 * \delta_2](f) = [\delta_1 \otimes \delta_2](\mu^*(f))$. Note that $\delta_1 \otimes \delta_2$ vanishes on $m^{k_1} \otimes A$ & $A \otimes m^{k_2}$ so it's enough to show that $\mu^*(f) \in m^{k_1} \otimes A + A \otimes m^{k_2}$. Since $\mu(e, e) = e$, $\mu^*(m) \subset m_{(e, e)}$. We observe that $m_{(e, e)} = m \otimes A + A \otimes m$ (exercise. hint: have \supset & $A \otimes A = \mathbb{F} \cdot 1 \oplus (m \otimes A + A \otimes m)$ b/c $\nabla f_1 \otimes f_2 \in \text{r.h.s.}$). So $\mu^*(m^{k_1+k_2}) \subset \mu^*(m)^{k_1+k_2} \subset (m \otimes A + A \otimes m)^{k_1+k_2} \subset [\text{binomial formula}] m^{k_1} \otimes A + A \otimes m^{k_2}$. \square of 0).

1) We'll deduce the associativity of $*$ from that of the product in G , which amounts to the claim that the following diagram is commutative:

$$\begin{array}{ccc} G \times G \times G & \xrightarrow{\mu \times \text{id}} & G \times G \\ \downarrow \text{id} \times \mu & & \downarrow \mu \\ G \times G & \xrightarrow{\mu} & G \end{array}$$

Equivalently, the diagram of pullbacks is commutative:

$$\begin{array}{ccccc} A \otimes A \otimes A & \xleftarrow{(\mu \times \text{id})^* = \mu^* \otimes \text{id}} & A \otimes A & \xleftarrow{a \otimes b \mapsto \mu^*(a) \otimes b} & \\ \uparrow (\text{id} \times \mu)^* = \text{id} \otimes \mu^* & & \downarrow \mu^* & & \\ A \otimes A & \xleftarrow{\mu^*} & A & & \end{array}$$

$$\text{Now } [(\delta_1 * \delta_2) * \delta_3](f) = [(\delta_1 * \delta_2) \otimes \delta_3](\mu^*(f)) =$$

$$[\delta_1 \otimes \delta_2 \otimes \delta_3]([\mu^* \otimes \text{id}] (\mu^*(f))) \xrightarrow[\text{commut. diagram}]{} ([\text{id} \otimes \mu^*]'' (\mu^*(f))] = [\delta_1 * (\delta_2 * \delta_3)](f)$$

The proof that ε is a unit is left as exercise \square of 1.

2) similar to 1) using the commutative diagram

$$\begin{array}{ccc} G \times G & \xrightarrow{M_G} & G \\ \downarrow \varphi \times \varphi & & \downarrow \varphi \\ H \times H & \xrightarrow{M_H} & H \end{array}$$

$$[\varphi_*(\delta_1 * \delta_2)](f) = [\delta_1 * \delta_2](\varphi^*(f)) = [\delta_1 \otimes \delta_2]([\mu_{G,H}^* \circ \varphi^*](f))$$

$$[\varphi_*(\delta_1) * \varphi_*(\delta_2)](f) = [\varphi_*(\delta_1) \otimes \varphi_*(\delta_2)](\mu_H^*(f)) = [\delta_1 \otimes \delta_2](\varphi^* \otimes \varphi^*) \circ M_H^*(f)$$

\square of 2).

1.3) Case of GL_n

Proposition:

For $A, B \in gl_n \subset \mathcal{D}(GL_n)$, we have: $A * B - B * A = [A, B] \in gl_n$ & in the case when $\text{char } F = p$, we have $A^* = A^p \in gl_n$

Proof: • Case of commutator

We interpret the ϵ -derivation A as $f \mapsto \frac{1}{\epsilon} (f(I + A\epsilon) - f(I))|_{\epsilon=0}$ (Rem. ii) in Sec 1.1 of Lec 2), equivalently

$$A(f) = [\text{coefficient of } t \text{ in (the Taylor expansion of) } f(I + tA)]$$

So for $F \in F[GL_n \times GL_n]$, we have

$$(1) [A \otimes B](F) = [\text{coefficient of } ts \text{ in } F(I + tA, I + sB)]$$

Indeed, (1) holds for F of the form $f_1 \otimes f_2$, hence in general.

$$\text{Note that } [\mu^*(f)](I + tA, I + sB) = f((I + tA)(I + sB)) =$$

$= f(I + tA + tB + tsAB)$. So (1) for $F = \mu^*(f)$ is the sum of 2 terms.

(i) The contribution of tA, tB . It's equal

$$\sum_{i,j,k,e=1}^n \frac{\partial^2 f}{\partial x_{ij} \partial x_{ke}} (I) A_{ij} B_{ke},$$

where the notation is as follows: we write $C \in \text{Mat}_n(\mathbb{F})$

as (C_{ij}) & x_{ij} denote the variable corresponding to the matrix entry ij (so that $C_{ij} = x_{ij}(C)$ & f is a function of the variables x_{ij}).

(ii) The contribution of $tsAB$ is $\sum_{i,j=1}^n \frac{\partial f}{\partial x_{ij}} (AB)_{ij}$, which is $AB \in \text{Mat}_n(\mathbb{F}) = T_e GL_n \subset D(GL_n)$.

To finish the proof note that (i) doesn't change if we swap A & B , hence in the difference $[A*B - B*A](f)$ these terms cancel out & we get $A*B - B*A = [A, B]$.

• Case of p th power. Here $\text{char } \mathbb{F} = p$. We want to show that the coefficient of $t_1 \dots t_p$ in (the Taylor expansion of)

$$(2) f\left(\prod_{i=1}^p (I + t_i A)\right) = f\left(\sum_{S \subseteq \{1, \dots, p\}} t_S A^{|S|}\right), \text{ where } t_S := \prod_{s \in S} t_s$$

This coefficient is equal to:

$$(3) \sum \frac{\partial^k f}{\partial x_{i_1, j_1} \dots \partial x_{i_k, j_k}} (I) \prod_{e=1}^k (A^{|S_e|})_{i_e j_e}$$

where the sum is taken over the following indexing set

$$\text{Ind} = \{(S_1, \dots, S_k, (i_1, j_1), \dots, (i_k, j_k)) \mid 1 \leq k \leq p, 1 \leq i_e, j_e \leq n, \{1, \dots, p\} = S_1 \sqcup \dots \sqcup S_k\}$$

(where S_i 's correspond to taking the summands in the r.h.s. of (2)).

The symmetric group S_p acts on Ind by permuting $\{1, \dots, p\}$ - and so changing S_i 's but not their cardinalities. So the summands in

(3) corresponding to the indexes in the same orbit are equal. The number of elements in the orbit of (S_1, \dots, S_k, \dots) is $p! / |S_1|! \dots |S_k|!$

- so divisible by p unless $k=1$, where the number is 1 & the corresponding summands are $\frac{\partial f}{\partial x_{ij}}(A^p)_{ij}$ ($1 \leq i, j \leq n$). The orbits whose cardinalities are divisible by p contribute multiples of p , i.e. 0 b/c $\text{char } \mathbb{F} = p$. So $(3) = \sum_{i,j=1}^n \frac{\partial f}{\partial x_{ij}}(A^p)_{ij}$, which is $A^p \in \text{Mat}_n(\mathbb{F}) \subset \mathcal{D}(GL_n)$ \square