Lazy approach to categories O, IV

- 1) Quantum categories O
- 2) Highest weight structure.
- 3) Deformation & subgeneric behaviour.
- 4) Whittaker coinvariants.

1) Quantum categories O

Let of be a simple Lie algebra over \mathbb{C} . We can consider the Drinfeld-Jimbo quantum group $U_q(\sigma)/\mathbb{C}(q)$ and the <u>mixed</u> (a.k.a. hybrid) $\mathbb{C}[q^{\pm i}]$ -lattice $U_q^{\text{mix}}(\sigma)$ generated by: $F_i, K_i^{\pm i}, E_i^{(e)} = \frac{E_i^{(e)}}{I}[I]_q! \ (i \in I, l \in \mathbb{Z}_{>0})$

indexing set for simple roots.

We can also consider De Concini-Kac lattice $U_q^{Dk}(g)$ (generated by F_i , $K_i^{\pm i}$, E_i^{-}) & Lusztig lattice $U_q^{L}(g)$ (generated by F_i^{-} , $K_i^{\pm i}$, E_i^{-}).

For $E \in \mathbb{C}^{\times} \longrightarrow U_g^{Mix}(g) = U_g^{Mix}(g)/(g-E)$, all these algebras are graded by the root lattice, Λ . Fix the G-invariant form (\cdot,\cdot) on $\int_i^{\infty} w \cdot (x,x^{\nu}) = 2$ for all short coroots x. Set $x = (x^{\nu}, x^{\nu})/2$. Identify $x = (x^{\nu}, x^{\nu})/2$.

Def: Pick $p \in C^*$ w. E = exp(9Y5-1/p) & $N \in \mathcal{L}^*$. Cotegory $\mathcal{O}_{p,1}$ = full subcategory in Λ -graded fin. generated $\mathcal{U}_{\varepsilon}$ -modules consisting of all $M = \bigoplus_{\lambda \in \Lambda} \mathcal{M}_{\varepsilon}$ s.t.

· dim M < w #).

· { \lambda | M, \$ = 0 } is bounded from above.

· K; acts on M, by exp(975-1 (1+1,d;)/p).

Rem: One can introduce Verma modules $\Delta_{p, \gamma}(\lambda)$, $\lambda \in \Lambda$, in the same way as for the usual category O. Their simple quotients, $\angle_{p, \gamma}(\lambda)$ give a complete list of irreps in $O_{p, \gamma}$. If $p \in \mathbb{Z} + \frac{1}{2} \ \& \ \forall = 0$ (we should be able to require just that $p \in \mathbb{Q}$) all $\angle_{p, \gamma}(\lambda)$ are finite dimensional. In particular the objects $\Delta_{p, \gamma}(\lambda)$ have infinite length.

2) Highest weight structure.

In Sec 1 of Lec 1 we have introduced the notion of a

highest weight category with finite poset. The usual category O doesn't quite fit this definition, but it splits as the direct sum of infinitesimal blocks that do. While $O_{p,v}$ splits as the direct sum of infinitesimal blocks, for interesting parameters (p,v), they are still infinite. So we need to generalize the definition of a highest weight category.

Def: Let T be a poset. We say that T is interval finite (resp. coideal finite) if $T \in T_1, T_2 \in T \Rightarrow [T_1, T_2] := \{T \mid T_1 \leq T \leq T_2\}$ is finite (resp., $\{T, T, T, T\}$ is finite)

Example: • A w the usual order is interval finite.
• If T is interval finite, then $T(\leq \tau_z) = \{\tau \in T \mid \tau \leq \tau_z\}$ is coideal finite $\forall \tau_z \in T$.

 $\mathcal{O}_{p,1}$ should be a highest weight category with poset Λ 8 standards $\Delta_{p,1}(\lambda)$, $\lambda \in \Lambda$ — we just need to say what this means formally.

Let F be a field & C be an abelian category w objects $\Delta(\tau)$, $\tau \in \mathcal{T}$, where \mathcal{T} is interval finite. To a poset ideal \mathcal{T} of \mathcal{T} we assign the Serve span $\mathcal{L}_{\mathcal{T}}$ of $\Delta(\tau)$, $\tau \in \mathcal{T}$.

Def: We say that C is highest weight w. poset T& standard objects $\Delta(z)$ if the following hold:

- (I) properties of Citself:
- (I.1) C is Noethernan,
- (I.2) Hom's ove finite dimensional
- (II) highest wt. structure for C_ familiar axioms:
- (I.1) Home $(\Delta(\tau_1), \Delta(\tau_2)) \neq 0 \Rightarrow \tau_1 \leq \tau_2$
- (I.2) Ende (a(t)) ~ F
- (I.3) + M∈C, ≠0 ∃ T | Home (a(c), M) ≠0.
- (II.4) \forall coideal finite poset ideal $\mathcal{T}_o \subset \mathcal{T} \ \forall \ \tau \in \mathcal{T} \exists$ projective object \mathcal{F}_c in $\mathcal{C}_{\mathcal{T}_o}$ w. $\mathcal{F}_{\mathcal{T}_o} \to \Delta(\tau)$ & ker filtered by $\Delta(\tau')$ w $\tau' \in \mathcal{T}_o$, $\tau' \to \tau$ (a finite filtration)

Premium exercise: Op, is highest weight w. poset 1 &

standards $\Delta_{p,\gamma}(\lambda), \lambda \in \Lambda$.

3) Deformation & subgeneric behaviour.

We want to analyze Op, a using the same techniques as we used for the BGG cat. O, namely

- · construct a deformation over a formal power series algebra.
 - · understand the subgeneric behavior.
 - · construct a "nice" functor to a "combinatorial" category

3.1) Deformation.

The formal power series ring will be in r+1 (where r=rx of) variables, r corresponding to deforming I and one corresponds to deforming p. Namely, let & be the affine Cartan, &= & Ct (where we use to denote a central element in the Kac-Moody algebra corresp. to (;·)). Set R=C[[[+*]].

We can consider the deformation Op, 1, R similarly to O, R in Sec 1.3 in Lec 1.

Set $\hat{\epsilon} = \exp(\Im \tau - 7/(p + \hbar)) \in \mathbb{C}[[\hbar]] \subset \mathbb{R}$ and form the algebra $U_{\hat{\epsilon}}^{m,\times}/\mathbb{C}[[\hbar]]$. We still have the natural inclusion $\iota: \mathcal{L} \to \mathbb{R}$.

By def'n, $\mathcal{O}_{p,1,R}$ consists of certain Λ -graded fingenerated $U_{\hat{\epsilon}}^{mix}$ -modules (cf. $\mathcal{O}_{1,R}$ in Sec 1.3). The condition for the action of K_i 's on M_{χ} is that it acts by the following element of R:

 $\exp\left(\Im \sqrt{-1}\left[\left(\lambda+\sqrt{\lambda_i}\right)+\left(\left(\lambda_i\right)\right]/\left(\rho+\frac{1}{h}\right)\right)$

The category $\mathcal{O}_{p,\eta,R}$ is highest weight over R, the details of the definition are left as an exercise.

3.2) Subgenevic behavior

We consider the affine root system {d+ns/ne72}.

Def: The integral roots for (1,p) are the affine roots d+nS with d+0S $n_{\lambda}((d,1)+np)\in\mathbb{Z}$, where $n_{\lambda}=\frac{(d^{\nu}\lambda^{\nu})}{2}$.

Expectation: 1) $O_{3,p}$ is semisimple \iff there are no integral roots. 2) When the integral root system consists of exactly two (mutually apposite) roots, $O_{3,p}$ is equivalent to \bigoplus of blocks of $O(Sl_2)$. This is the subgeneric behavior.

Remark: In the full generality this is not in the literature but in interesting (and sufficiently broad) special cases it is. The case when E is not a root of 1 should be done using a suitable version of twisting functors (constituting an action of Br_W) and their t-exactness morally similar to I.L.'s work with Dhillon. With this, the proof reduces to the case when E=iT: we expect that for generic I, O_{PT} is S/Simple. This is known when the order of E is odd (& coprime to S if G is G_{I}), and is based on understanding the Daumaye locus in $Z(U_E^{DK})$. An informal reason why $O_{E,V}$ w. V generic should be S/Simple is as follows.

Then we expect that the parabolic induction functor $\mathcal{O}_{p,r}(L) \longrightarrow \mathcal{O}_{p,r}(g)$ is an equivalence. But $\mathcal{O}_{p,r}(g)$ is semisimple.

4) Whittaker coinvariants.

We now assume:

· V = 0

· E = primitive \$1 w. d odd (& coprime to 3 for 9 = Gz).

To handle the general case, some modification may be needed.

It will be convenient to modify the Cartan part: let Λ_w^v be the coweight lattice: we replace $Span(K_\mu | \mu \in \Lambda)$ w. $Span(K_\mu | \mu \in \Lambda_w^v)$. It still naturally acts on modules from $O_{p,1}$, R.

Our functor will still be Whittaker coinvariants.

Note that the quantum Serre relations imply that there's no homomorphism $U \xrightarrow{\psi} \mathbb{C}$ w. $\psi(F_i) \neq 0$ $\forall i$ (exercise).

However, Sevostyanov proved that there are elements

III) We have $Z(U_{\hat{\epsilon}}^{DK}) \simeq Span_{\mathcal{C}(\mathcal{C}h)}(K_{2M}|_{M} \in P)^{(W, \cdot)}$ via HC Isomorphism. This implies infinitesimal block decomposition for $\mathcal{O}_{p,0}(k\mathcal{O}_{p,0,R})$. Namely consider the action of $W \ltimes \Lambda$ on Λ , where W acts by the dot-action & Λ acts by t_{λ} . $M = \mu + d\lambda$ (where d is the order of ϵ). Then $\mathcal{O}_{p,0} = \bigoplus_{k=0}^{\infty} \mathcal{O}_{p,0,\mathcal{Z}}$, where \mathbb{Z} runs over the set of $W \ltimes \Lambda$ -orbits in Λ . This can be

deduced, for example from Sec 3.2. Every orbit has unique point in the anti-dominant d-alcove: minimal coroat $A = \{\lambda \in \Lambda \mid \langle \lambda + \rho, d_i^{\vee} \rangle \leq 0, \langle \lambda + \rho, d_o^{\vee} \rangle \gg -d\}$ Let 1 be the unique point of ANE & W°CWXN be its stabilizer, a finite reflection group. IV) WXA acts on $\hat{h} = \hat{h} \oplus \hat{C}h$ s.t. Wacts by the default action & ty (3+2h) = M+ (2+<M,32)h (ME/,3Eb). For le = let of denote the homomorphism $Z(U_{\hat{\epsilon}}^{Dk}) \longrightarrow R$ given by action on $\Delta_{p,o,k}(\lambda)$. Then χ_{-} gives an identification of the completion $Z(U_{\hat{\epsilon}}^{Dk})^{n} = at$ the maximal ideal corresponding to = & R. Moveover, for $x \in W^{av} \times_{x \cdot \lambda} = x \times_{\lambda} = giving$

Rem: One can ask to describe the order on $(W\times \Lambda)/W^{\circ}$ coming from the highest wt stucture on $\mathcal{O}_{p,0,\Xi}$ in terms of the Bruhet order, \leq . Note that it cannot coincide W \leq 6/c the highest wt. order is preserved under left multiplication by the t_{χ} 's. It turns out that we have the following t_{χ}

an identification of Spor (1) w. RW-R-61 module Rx.

well-de	efined orde): X < sty	if tyx =	ty for a	ll y suffi-
ciently	dominant	This is the	L highest w	it order for	ll suffi- Op.0, E
3,37,339	V(2)//0./04/03	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7	4 700-7 9 27	p, 0, E.