RCA, PROBLEM SET 1

IVAN LOSEV

0.1. Check that the formulas

$$x \mapsto x, w \mapsto w, y \mapsto D_y := \partial_y + \sum_{s \in S} \frac{c(s)\langle \alpha_s, y \rangle}{\alpha_s} (s-1), \quad x \in \mathfrak{h}^*, w \in W, y \in \mathfrak{h},$$

define an algebra homomorphism $H_c(W, \mathfrak{h}) \to D(\mathfrak{h}^{reg}) \# W$ (e.g., following the sketch given in the lecture).

0.2. Check that the Euler element $h = \sum_{i=1}^{n} x_i y_i - \sum_{s \in S} c(s) s$ satisfies

$$[h, x] = x, [h, w] = 0, [h, y] = -y.$$

- **0.3.** Let \mathcal{C} be a highest weight category. Show that the standard object Δ_L is the projective cover of L in the Serre subcategory of \mathcal{C} spanned by $L' \leq L$.
- **0.4.** Show that in \mathcal{O}_c we have the following (we don't know at this point that \mathcal{O}_c is a highest weight category):

$$\operatorname{Hom}(\Delta_c(\tau), \Delta_c(\tau')) \neq 0 \Rightarrow \tau \leqslant_c \tau',$$

$$\operatorname{End}(\Delta_c(\tau)) = \mathbb{C},$$

$$\operatorname{Ext}^{1}(\Delta_{c}(\tau), \Delta_{c}(\tau')) \neq 0 \Rightarrow \tau <_{c} \tau'.$$

- **0.5.** Prove that the map $[\tau] \mapsto [\Delta_c(\tau)]$ is an isomorphism $K_0(W\text{-rep}) \xrightarrow{\sim} K_0(\mathcal{O}_c)$. Furthermore, prove that two objects in \mathcal{O}_c with the same character have the same classes in $K_0(\mathcal{O}_c)$.
- **0.6.** Let $M_1, M_2 \in \mathcal{O}_c$ be such that $M_1 \oplus M_2$ has a Verma filtration. Show that both M_1, M_2 have Verma filtrations (again, at this point we still don't know that \mathcal{O}_c is highest weight).
- **0.7.** Let a parameter c be generic in the sense that $\tau \leqslant_c \tau'$ implies $\tau = \tau'$. Show that the category \mathcal{O}_c is semisimple and that $P_c(\tau) = \Delta_c(\tau) = L_c(\tau)$.