RCA, PROBLEM SET 3

IVAN LOSEV

- **0.1.** Prove that the completion functor $M \mapsto M^{\wedge_0}$ is an equivalence $\mathcal{O}_c \to \mathcal{O}_c^{\wedge_0}$ with inverse $N \mapsto \bigoplus_{\lambda} N_{\lambda}$.
- **0.2.** Show that KZ and KZ' intertwine the functors ${}^{\mathcal{O}}\operatorname{Ind}_W^{W'}$, ${}^{\mathcal{H}}\operatorname{Ind}_W^{W'}$. For this show that the induction and restriction map between $\mathcal{O}_c(W)^{tor}$, $\mathcal{O}_c(W')^{tor}$.
- **0.3.** Show that, for $M \in \mathcal{O}_c$, the following are equivalent:
 - M is free over $\mathbb{C}[\mathfrak{h}]$,
 - \bullet *M* is standardly filtered.

In this case, the class of M in K_0 coincides with $M/\mathfrak{h}M$. Formulate and prove an analogous statement for $\mathcal{O}_c^{\wedge_0}$.

0.4. Show that ${}^{\mathcal{O}}\operatorname{Ind}_W^{W'}$ is exact. For this, you'll need to answer the questions: where do continuous duals of modules in $\mathcal{O}_c^{\wedge_{W^b}}$ live? how to describe $\operatorname{Ind}(\bullet^{\vee})^{\vee}$.