RCA, PROBLEM SET 4

IVAN LOSEV

0.1. Show that the indecomposable summands of P_{KZ} are precisely the indecomposable projective objects that are also injective.

The next two problems are relatively hard...

- **0.2.** Suppose that $c(s) \notin \frac{1}{2} + \mathbb{Z}$ for all c. Show that the KZ functor $\mathcal{O}_c(W)$ is fully faithful on the standardly filtered objects.
- **0.3.** We assume that the tensor product functor $\operatorname{Pon}_{n_1}(\dot{U}_{\epsilon}) \boxtimes \operatorname{Pol}_{n_2}(\dot{U}_{\epsilon}) \to \operatorname{Pol}_{n_1+n_2}(\dot{U}_{\epsilon})$ maps the projective objects to projective objects. Show the following
 - (1) Every projective object in $\operatorname{Pol}_n(\dot{U}_{\epsilon})$ is included into $(\mathbb{C}^m)^{\otimes n}$ with standardly filtered cokernel.
 - (2) Every standard object in $\operatorname{Pol}_n(\dot{U}_{\epsilon})$ is included into $(\mathbb{C}^m)^{\otimes n}$.
 - (3) $(\mathbb{C}^m)^{\otimes n}$ is injective.
 - (4) Deduce that the Schur functor is fully faithful on the projective objects.