RCA, PROBLEM SET 5

IVAN LOSEV

- **0.1.** Let $\mathcal{C}, \mathcal{C}', \mathcal{D}, \mathcal{D}'$ be abelian categories equivalent to categories of modules over finite dimensional associative algebras over a base field \mathbb{F} . Let $\varphi_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}', \varphi_{\mathcal{D}}: \mathcal{D} \to \mathcal{D}'$ be exact functors and let $\pi: \mathcal{C} \to \mathcal{D}, \pi': \mathcal{C}' \to \mathcal{D}'$ be quotient functors. Suppose that
 - $\pi' \circ \varphi_{\mathcal{C}} \cong \varphi_{\mathcal{D}} \circ \pi$,
 - π, π' are fully faithful on the projective objects,
 - $\varphi_{\mathcal{C}}, \varphi_{\mathcal{D}}$ map the projective objects to the projective objects.

Show that $\operatorname{End}(\varphi_{\mathcal{C}}) = \operatorname{End}(\varphi_{\mathcal{D}})$. Moreover, check that $\varphi_{\mathcal{C}}$ is uniquely recovered from the remaining three functors.

- **0.2.** Let $W'' \subset W' \subset W$ be parabolic subgroups. Then ${}^{\mathcal{O}} \mathrm{Res}_W^{W''} \cong {}^{\mathcal{O}} \mathrm{Res}_{W'}^{W''} \circ {}^{\mathcal{O}} \mathrm{Res}_W^{W'}$.
- **0.3.** For $c = \frac{a}{d}$ with a > 0 and GCD(a, d) = 1 prove the following identity in $K_0(\mathcal{O}_c(kd))$:

$$\sum_{i=0}^{k-1} (-1)^{i} [L_c((k-i)d, d^i)] = \sum_{j=0}^{dk-1} (-1)^{j} [\Delta_c(dk-j, 1^j)]$$