RCA, PROBLEM SET 6

IVAN LOSEV

- **0.1.** Let $c = \frac{a}{d}$, where d > 1, a > 0, GCD(a, d) = 1. Show that $Ind_{S_{md}}^{S_d^m} L_c((d))^{\boxtimes m}$ decomposes as $\bigoplus_{\tau \vdash m} L_c(d\tau)^{\oplus \dim \tau}$, where by $\dim \tau$ we mean the dimension of the corresponding representation.
- **0.2.** Let \mathfrak{g} be a Lie algebra and $\mathfrak{g}_1, \mathfrak{g}_2$ be subalgebras of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{g}_1 + \mathfrak{g}_2$. Show that, for a \mathfrak{g}_1 -module, there is a natural isomorphism

$$\operatorname{Ind}_{\mathfrak{g}}^{\mathfrak{g}_1}(V)/\mathfrak{g}_2\operatorname{Ind}_{\mathfrak{g}}^{\mathfrak{g}_1}(V)\cong V/(\mathfrak{g}_1\cap\mathfrak{g}_2)V.$$

0.3. Show that $\langle M_0, M_\infty | \{0, \infty\} \rangle \cong \operatorname{Hom}_{\hat{\mathfrak{g}}}(M_0, \mathbb{D}M_1)^*$.