LECTURES ON SYMPLECTIC REFLECTION ALGEBRAS

IVAN LOSEV

15. Quotient singularities as quiver varieties

15.1. **Main theorem.** We fix $n \ge 1$ and a Kleinian group $\Gamma_1 \subset \operatorname{SL}_2(\mathbb{C})$. We form the wreath-product group $\Gamma_n = \mathfrak{S}_n \ltimes \Gamma_1^n$, it naturally acts on $\mathbb{C}^{2n} = (\mathbb{C}^2)^{\oplus n}$. We are going to describe the quotient singularity \mathbb{C}^{2n}/Γ_n as a quiver variety, i.e., as a Hamiltonian reduction of the representation space of an appropriate double quiver.

Recall that from Γ_1 we can produce its McKay quiver \underline{Q}^{MK} that is of affine type, its vertices numbered by $0, \ldots, r$ are in one-to-one correspondence with Γ_1 -irreps, where 0 corresponds to the trivial representation. We take the quiver \underline{Q}^{CM} obtained from \underline{Q}^{MK} by adding an additional vertex ∞ and one arrow from ∞ to 0. Then we take the double quiver Q^{CM} of Q^{CM} .

Consider the representation space $R := \operatorname{Rep}(Q^{CM}, v)$, where $v = n\delta + \epsilon_{\infty}$, δ being the indecomposable imaginary root (supported on the vertices $0, \ldots, r$) and ϵ_{∞} is the coordinate vector at ∞ . We consider the group $G := \operatorname{GL}(n\delta)$, it acts on R in a Hamiltonian way with moment map μ constructed in Lecture 10. We remark that we can consider the larger group, $\bar{G} := G \times \mathbb{C}^{\times}$, where \mathbb{C}^{\times} acts on the one-dimensional space at ∞ ; this group still acts on R. However, the one-dimensional torus $(x \operatorname{id}_{\mathbb{C}^{v_i}})_{i \in \underline{Q}_0^{CM}}$ acts trivially on R. Moreover, the moment map $\bar{\mu}$ for \bar{G} is recovered from μ as follows: $\bar{\mu}(r) = (\mu(r), -\sum_{i=0}^r \operatorname{tr} \mu(r)_i)$. So the reductions with respect to G and with respect to \bar{G} are the same.

Theorem 15.1. [Gan-Ginzburg, [GG]] The fiber $\mu^{-1}(0)$ is reduced and has codimension dim G in R.

We first show that the codimension of $\mu^{-1}(0)$ is dim G. For this we recall (Lecture 10) that $\mu^{-1}(0)$ is the union of cotangent bundles to orbits in $R_0 := \text{Rep}(Q, v)$. The codimension of any conormal bundle is dim R_0 . The codimension of the union of the conormal bundles is therefore dim $R_0 + m$, where m is "the maximal number of parameters describing G-orbits in R_0 ". This will be defined precisely and computed below.

Then we will show that the fiber $\mu^{-1}(0)$ is reduced. For this, as we have seen in Lecture 11, it is enough to prove that each component of $\mu^{-1}(0)$ admits a free G-orbit. To achieve this, we will need an explicit description of the components. In particular, we will see that there are n+1 of them.

Theorem 15.2. We have a \mathbb{C}^{\times} -equivariant isomorphism $\mu^{-1}(0)//G \cong \mathbb{C}^{2n}/\Gamma_n$.

This is a special case of [CB2, Theorem 1.1].

15.2. **Theorems on quiver representations.** First of all, let us discuss the number of parameters needed to describe representations of a quiver \underline{Q} with given dimension v up to an isomorphism. Here Q is an arbitrary quiver.

We will need a stratification of Rep(Q, v) by dimensions of indecomposable summands (recall that each representation has a decomposition into the direct sum of indecomposables,

2 IVAN LOSEV

the multiplicities of the summands do not depend on the choice of a decomposition, this is a special case of the Krull-Schmidt theorem). Let $I(\alpha^1,\ldots,\alpha^n)$ denote the subset of $\operatorname{Rep}(\underline{Q},v)$ of all representations, whose decomposition into indecomposables contains summands of dimensions α^1,\ldots,α^n . A choice of a decomposition of the graded vector space of dimension v into the summands of dimensions α^1,\ldots,α^n gives rise to an embedding $\prod_{i=1}^n I(\alpha^i) \hookrightarrow I(\alpha^1,\ldots,\alpha^m)$ and to a surjection $\operatorname{GL}(v) \times \prod_{i=1}^n I(\alpha^i) \twoheadrightarrow I(\alpha^1,\ldots,\alpha^m)$ that descends to a surjection

(1)
$$\operatorname{GL}(v) \times_{\prod_{i=1}^n \operatorname{GL}(\alpha^i)} \prod_{i=1}^n I(\alpha^i) \twoheadrightarrow I(\alpha^1, \dots, \alpha^m).$$

Using this (and the classical algebro-geometric result that the image of a constructible subset under a morphism is constructible), one can prove by induction that $I(\alpha^1, \ldots, \alpha^n)$ is a constructible set (i.e., is a union of finitely many locally closed subvarieties) and that these subvarieties can be chosen GL(v)-stable.

We are now ready to define $m(\alpha)$, the number of parameters needed to describe indecomposable representations of dimension α . Let Z be an irreducible algebraic variety acted on by a connected algebraic group G. For $i \geq 0$ consider $Z_i := \{z \in Z | \dim Gz = i\}$, this is a locally closed subvariety. We set $m(Z) := \max_i \dim Z_i - i$. We remark that m(Z) = 0 is equivalent to Z having only finitely many G-orbits. The definition of m(Z) extends to the case when Z is a G-stable constructible subset in some G-variety. Now we set $m(\alpha) = m(I(\alpha))$. Similarly, we can define the number $m(\alpha^1, \ldots, \alpha^n) := m(I(\alpha^1, \ldots, \alpha^n))$.

Lemma 15.3. We have
$$m(\alpha^1, \ldots, \alpha^n) = \sum_{i=1}^n m(\alpha^i)$$
.

Proof. The inequality $m(\alpha^1,\ldots,\alpha^n)\leqslant \sum_{i=1}^n m(\alpha^i)$ is an easy consequence of (1). Let us prove the opposite inequality. We may assume that $m(\alpha^1),\ldots,m(\alpha^k)>0, m(\alpha^{k+1})=\ldots=m(\alpha^n)=0$. Let $I^0(\alpha^i), i=1,\ldots,k$ be irreducible $\mathrm{GL}(\alpha^i)$ -stable locally closed subvarieties in $I(\alpha^i)$ such that $m(I^0(\alpha^i))>0$. We still have a surjection

$$\operatorname{GL}(v) \times_{\prod_{i=1}^k \operatorname{GL}(\alpha^i) \times \operatorname{GL}(\alpha^{k+1} + \dots + \alpha^n)} \left(\prod_{i=1}^k I^0(\alpha^i) \times I(\alpha^{k+1} + \dots + \alpha^n) \right) \twoheadrightarrow I(\alpha^1, \dots, \alpha^n).$$

It is easy to see that the stabilizer in GL(v) of a generic element of $\prod_{i=1}^k I^0(\alpha^i) \times I(\alpha^{k+1}, \dots, \alpha^n)$ is contained in $\prod_{i=1}^k GL(\alpha^i) \times GL(\alpha^{k+1} + \dots + \alpha^n)$. So the surjection above generically has finite fibers. It follows that $m(\alpha^1, \dots, \alpha^n) = m(\alpha^1) + \dots + m(\alpha^k) + m(\alpha^{k+1}, \dots, \alpha^n) = m(\alpha^1) + \dots + m(\alpha^k)$.

Example 15.4. Let us consider the case of a quiver with one vertex and a single loop. Here $I(\alpha^1, \ldots, \alpha^n)$ consists of matrices whose Jordan normal form has n blocks of sizes $\alpha^1, \ldots, \alpha^n$. Clearly, $m(\alpha^1, \ldots, \alpha^n) = n$.

There is a formula for $m(\alpha)$ found by Kac. Consider the quadratic function $(v, v) = \sum_{i \in \underline{Q}_0} v_i^2 - \sum_{a \in \underline{Q}_1} v_{h(a)} v_{t(a)}$. A nonzero element $\alpha \in \mathbb{Z}_{\geq 0}^{\underline{Q}_0}$ is called a *root* if $(\alpha, \alpha) \leq 1$. Then set p(v) = 1 - (v, v).

Theorem 15.5. (1) $I(\alpha) \neq \emptyset$ if and only if α is a root and $m(\alpha) = p(\alpha)$.

(2) there is a decomposition $I(\alpha) = \bigsqcup_{i=0}^{N} I^{i}(\alpha)$ into irreducible locally closed G-stable subvarieties such that $m(I^{0}(\alpha)) = p(\alpha), m(I^{i}(\alpha)) < p(\alpha)$.

The first part is a well-known theorem of Kac. A reference for the second one can be found in the proof of [GG, Theorem 3.2.3].

Now let us describe the doubled setting. Let Q be the double of Q and $R_0 = \text{Rep}(Q, v)$, R = $\operatorname{Rep}(Q,v)=T^*R_0$. We have the moment map $\mu:R\to\mathfrak{g}:=\mathfrak{gl}(\overline{v})$. From the description of $\mu^{-1}(0)$ recalled above, we see that dim $\mu^{-1}(0) = \dim R_0 + m(R_0)$. Indeed, let $\rho: R \to R_0$ be the projection. Let $R_{0i} := \{r \in R_0 | \dim Gr = i\}$. Then $\rho^{-1}(R_{0,i}) \cap \mu^{-1}(0)$ surjects to $\rho^{-1}(R_{0,i})$ with fibers of dimensions dim $R_0 - i$.

A one-dimensional subtorus of G acts trivially, so im $\mu \subset \mathfrak{sl}(v) := \{(A_i)_{i \in Q_0} | \sum_i \operatorname{tr}(A_i) = \{(A_i)_{i \in Q_0} | \sum_i \operatorname{tr}$ 0} and $\operatorname{codim}_R \mu^{-1}(0) \leq \dim \mathfrak{g} - 1$. The equality $\operatorname{codim}_R \mu^{-1}(0) = \dim \mathfrak{g} - 1$ is equivalent to

$$m(R_0) = \dim R_0 - \dim \mathfrak{g} + 1 = \sum_{a \in \underline{Q}_1} v_{t(a)} v_{h(a)} - \sum_{i \in Q_0} v_i^2 + 1 = p(v).$$

On the other hand, from the discussion above, we see that $m(R_0) = \max \sum_{i=1}^n p(\alpha^i)$, where the max is taken over all decompositions $v = \alpha^1 + \ldots + \alpha^n$ into the sum of roots.

Theorem 15.6. The following conditions are equivalent.

- (1) $\operatorname{codim}_R \mu^{-1}(0) = \dim \mathfrak{g} 1$ (this includes the claim that fiber is non-empty). (2) $p(v) \geqslant \sum_{i=1}^n p(\alpha^i)$ for all decompositions $v = \sum_{i=1}^n \alpha^i$ into the sum of roots α^i .

Both $\mathbb{C}[R], \mathbb{C}[\mathfrak{sl}(v)]$ are positively graded and μ is homogeneous, we now can apply a graded analog of [E, Theorem 18.16] to see that μ is flat. Being flat, μ is open, and, being in addition \mathbb{C}^{\times} -equivariant, it is surjective.

Now let us explain why we need part 2 of Theorem 15.5. Assume the equivalent conditions of Theorem 15.6 hold. It follows from Theorem 15.5 and the proof of Lemma 15.3 that one can decompose $I(\alpha^1,\ldots,\alpha^n)$ into the union of locally closed irreducible G-stable subvarieties $\bigsqcup_{j\geqslant 0} I^j(\alpha^1,\ldots,\alpha^n)$ such that $m(I^0(\alpha^1,\ldots,\alpha^n)) = \sum_{i=1}^n p(\alpha^i) > m(I^j(\alpha^1,\ldots,\alpha^n))$ for j>00. Consider the subvariety $\rho^{-1}(I^j(\alpha^1,\ldots,\alpha^n)) \cap \mu^{-1}(0)$. Being a vector bundle over an irreducible variety, the intersection is irreducible. Its dimension is $\leq \dim R_0 + \sum_{i=1}^n p(\alpha^i)$ with equality achieved only if j=0. Each irreducible component of $\mu^{-1}(0)$ contains exactly one dense $\rho^{-1}(I^j(\alpha^1,\ldots,\alpha^n))\cap\mu^{-1}(0)$. We see that the irreducible components of $\mu^{-1}(0)$ are in one-to-one correspondence with decompositions $v = \sum_{i=1}^{n} \alpha^{i}$ such that $p(v) = \sum_{i=1}^{n} p(\alpha^{i})$.

Below it will be sometimes convenient to deal with preprojective algebras. Recall that the preprojective algebra for Q is the quotient of the path algebra $\mathbb{C}Q$ by the relations

$$\sum_{a \in Q_1, h(a) = i} aa^* - \sum_{a \in Q_1, t(a) = i} a^*a = 0,$$

one for each $i \in Q_0$. Of course, $\text{Rep}(\Pi^0(Q), v) = \mu^{-1}(0)$.

15.3. **Codimension.** Now we return to the case when $Q = Q^{CM}$. Consider the decomposition $n\delta + \epsilon_{\infty} = \sum_{i=0}^{m} \alpha^{i}$ into the sum of roots, where $\alpha_{\infty}^{0} = 1$ and $\alpha_{\infty}^{i} = 0$ for i > 0. So α^{i} is a root in the corresponding affine root system.

Let p^{MK} denote the p-function for the McKay quiver. We have $p(\alpha^i) = p^{MK}(\alpha^i)$. The latter is zero when α is a real root, and 1 when α^i is a multiple of δ . Further, we have $p(n\delta + \epsilon_{\infty}) = p^{MK}(n\delta) - 1 + n = 1 - 1 + n = n.$

Now we prove $p(n\delta + \epsilon_{\infty}) \ge \sum_{i=0}^{m} p(\alpha^{i})$ and that the equality holds in exactly one of the following situations: $\alpha^{0} = k\delta + \epsilon_{\infty}, \alpha^{1} = \ldots = \alpha^{n-k} = \delta$ for some $k = 0, \ldots, n$.

IVAN LOSEV

We have $p(\alpha^0) = \alpha_0^0 + p^{MK}(\alpha^0 - \epsilon_\infty) - 1$. We have $p^{MK}(\alpha^0 - \epsilon_\infty) \le 1$ with equality only if $\alpha^0 - \epsilon_\infty = k\delta$. So either $p(\alpha^0) < \alpha_0^0$ or $p(\alpha^0) = \alpha_0^0$ for $\alpha^0 = k\delta + \epsilon$. We also have $p(\alpha^i) \le \alpha_0^i$ with equality only if $\alpha^i = \delta$. Since $\sum_{i=0}^m \alpha_0^i = n$, we are done.

This already proves the claim about codimension. Also this proves that the total number of irreducible components is n + 1.

15.4. **Points without stabilizer.** We will describe the n+1 components of $\mu^{-1}(0) \subset \text{Rep}(Q, n\delta + \epsilon_{\infty})$ explicitly and in each we produce a point with a trivial stabilizer. But first we need to determine simple representations in $\mu^{-1}(0)$ for some other dimension vectors.

Lemma 15.7. Let v be a dimension vector for Q^{MK} .

- (1) If $v < \delta$ (i.e., $v \neq \delta$ and all coordinates of δv are non-negative), then the only semi-simple representation in $\text{Rep}(\Pi^0(Q^{MK}), v)$ is 0.
- (2) If $v = \delta$, then $\text{Rep}(\Pi^0(Q^{MK}), v)$ is irreducible and a generic representation is simple.

Proof. It is enough to prove the claim for the simple representations. The dimension of all components of $\operatorname{Rep}(\Pi^0(Q^{MK}), v)$ is $\sum_{a \in Q_1^{MK}} v_{t(a)} v_{h(a)}$. If there is a non-zero simple representation, then, due to \mathbb{C}^{\times} -equivariance, there is a one-parameter family of such, each with G-orbit of dimension $\sum_{i=0}^r v_i^2 - 1$. So we see that $0 \leq \dim \mu^{-1}(0) - \dim G = -(v, v) < 0$, contradiction.

Let us now consider the case of $v = \delta$. Then there is only one component of $\operatorname{Rep}(\Pi^0(Q^{MK}), \delta)$ of dimension $\sum_a \delta_{t(a)} \delta_{h(a)} + 1$. This is proved by analogy with the previous section. Since $\operatorname{Rep}(\Pi^0(Q^{MK}), \delta) / / \operatorname{GL}(\delta) \cong \mathbb{C}^2 / \Gamma_1$, we see that there are infinitely many isomorphism classes of semi-simple representations. On the other hand, by (1), any reducible nonzero semisimple representation is 0. So any representation lying in the complement of the zero fiber of $\operatorname{Rep}(\Pi^0(Q^{MK}), \delta) \to \operatorname{Rep}(\Pi^0(Q^{MK}), \delta) / / \operatorname{GL}(\delta)$ is simple.

Take pairwise distinct simple representations x_1, \ldots, x_n of $\operatorname{Rep}(\Pi^0(Q^{MK}), \delta)$. Pick a decomposition of $\bigoplus_{i=0}^r \mathbb{C}^{n\delta_i}$ into $(\bigoplus \mathbb{C}^{\delta_i})^{\oplus n}$. Then $x := \bigoplus_{i=1}^n x_i$ is in $\operatorname{Rep}(\Pi^0(Q^{MK}), n\delta)$. The stabilizer of x in G is isomorphic to $(\mathbb{C}^\times)^n \hookrightarrow \operatorname{GL}(\delta)^{\times n} \hookrightarrow \operatorname{GL}(n\delta)$. It acts on \mathbb{C}^n (the space of maps corresponding to the arrow from ∞ to 0) faithfully by diagonal matrices, let e_1, \ldots, e_n be an eigenbasis. Consider the locally closed subvariety $\mathcal{M}_k := \{(x_1, \ldots, x_n, i, j)\}$, where x_1, \ldots, x_n are as above, $i \in \mathbb{C}^n$ a vector that is the span of e_1, \ldots, e_k with nonzero coefficients, $j \in \mathbb{C}^{n*}, j(e_1) = \ldots = j(e_k) = 0, j(e_{k+1}), \ldots, j(e_n) \neq 0$. In particular, we see that ij = 0 and so $\mathcal{M}_k \subset \mu^{-1}(0)$. The stabilizer of (i,j) in $\mathbb{C}^{\times n}$ is trivial and so the stabilizer of any point in \mathcal{M}_k is trivial. We claim that $\overline{G}\mathcal{M}_k$ are different irreducible components of $\mu^{-1}(0)$. It is easy to see that $G\mathcal{M}_k \cap G\mathcal{M}_{k'} = \emptyset$ for $k \neq k'$ (just consider the (i,j) components). Clearly, \mathcal{M}_k is stable under $\operatorname{GL}(\delta)^{\times n}$ and the action of this group is free. The dimension of the quotient is the number of parameters for the x_ℓ 's and this number is 2n. The map

$$\operatorname{GL}(n\delta) \times_{\operatorname{GL}(\delta)^{\times n}} \mathcal{M}_k \to \mu^{-1}(0), (g, m) \mapsto gm$$

has finite fibers (that are orbits for a natural action of $\mathfrak{S}_k \times \mathfrak{S}_{n-k}$). So dim $\overline{GM_k} = \dim G + 2n = \dim \mu^{-1}(0)$. Our claim is proved and this finishes the proof of Theorem 15.1.

15.5. Sketch of proof of Theorem 15.2. In fact, one can construct a morphism $\mathbb{C}^{2n}/\Gamma_n = (\mathbb{C}^2/\Gamma_1)^n/\mathfrak{S}_n \to \mu^{-1}(0)//G$ and then prove that this is an isomorphism.

Recall that $\mathbb{C}^2/\Gamma_1 = \mu_1^{-1}(0)//\operatorname{GL}(\delta)$, where $\mu_1 : \operatorname{Rep}(Q^{MK}, \delta) \to \mathfrak{gl}(\delta)$ is the moment map. We have a map $[\mu_1^{-1}(0)//\operatorname{GL}(\delta)]^n \to \mu^{-1}(0)//G$ induced by $(x_1, \dots, x_n) \in \mu_1^{-1}(0)^n \to \mu^{-1}(0)$

 $(x_1 \oplus \ldots \oplus x_n, 0, 0)$. Since permuting the summands does not change the G-orbit, this morphism descends to $\psi : [\mu_1^{-1}(0)//\operatorname{GL}(\delta)]^n/\mathfrak{S}_n \to \mu^{-1}(0)//G$.

We claim that this morphism is bijective. This amounts to showing that every semisimple representation of in $\operatorname{Rep}(Q, n\delta + \epsilon_{\infty})$ decomposes into the sum $x_1 \oplus \ldots \oplus x_n \oplus (0, 0)$, where $x_k \in \mu_1^{-1}(0)$ (and then x_1, \ldots, x_n are defined uniquely up to isomorphisms and a permutation). This is a consequence of the following theorem of Crawley-Boevey describing the possible dimension vectors of simple representations in $\mu^{-1}(0)$ together with our computations in Section 3.

Theorem 15.8. Let Q be a double quiver of \underline{Q} , v be its dimension vector. Then the following statements are equivalent.

- (1) There is a simple representation in $Rep(\Pi^0(Q), v)$.
- (2) $p(v) > \sum_{i=1}^{m} p(\alpha^{i})$ for any proper decomposition of v into the sum of roots.

By the construction ψ is \mathbb{C}^{\times} -equivariant. The \mathbb{C}^{\times} -actions on both varieties contract everything to 0. Since the preimage of 0 under ψ is a single point, we deduce that ψ is finite, this is a geometric version of the graded Nakayama lemma.

The variety \mathbb{C}^{2n}/Γ_n is normal. There is a general result of Crawley-Boevey, [CB3], saying that $\mu^{-1}(0)/\!/\operatorname{GL}(v)$ is normal for any double quiver Q and any dimension vector v. So in our case the variety $\mu^{-1}(0)/\!/G$ is normal, and this completes the proof.

References

- [CB1] W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Comp. Math. 126 (2001), 257–293.
- [CB2] W. Crawley-Boevey, Decomposition of Marsden-Weinstein reductions for representations of quivers, Comp. Math. 130 (2002), 225–239.
- [CB3] W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann. 325 (2003), 55-79.
- [E] D.Eisenbud, Commutative algebra with a view towards algebraic geometry. GTM 150, Springer Verlag, 1995.
- [GG] W.L. Gan, V. Ginzburg, Almost commuting variety, D-modules and Cherednik algebras. IMRP, 2006, doi: 10.1155/IMRP/2006/26439. arXiv:math/0409262.