## LECTURES ON SYMPLECTIC REFLECTION ALGEBRAS

## IVAN LOSEV

## Correction to Section 15.4

Unfortunately, the argument in Section 15.4 of the lecture that shows that all n+1 components of  $\mu^{-1}(0)$  contain a point with a trivial stabilizer is incorrect. The reason is that only  $\mathcal{M}_0, \mathcal{M}_n$  are subvarieties in  $\mu^{-1}(0)$ , while the other n-1 varieties  $\mathcal{M}_i$  even do not intersect  $\mu^{-1}(0)$ . A correct argument is below.

**Lemma 0.1.** A generic representation in  $\operatorname{Rep}(\underline{Q}^{MK}, \delta)$  is indecomposable and its stabilizer in  $\operatorname{GL}(\delta)$  is  $\mathbb{C}^{\times}$ .

Proof. All subsets  $I(\alpha^1,\ldots,\alpha^n)\subset \operatorname{Rep}(\underline{Q}^{MK},\delta)$  with n>1 contain finitely many orbits. Let us decompose  $I(\delta)$  into locally closed irreducible G-stable subvarieties,  $I(\delta)=I^0(\delta)\sqcup I^1(\delta)\sqcup\ldots\sqcup I^k(\delta)$  with  $m(I^0(\delta))=1$  and  $m(I^\ell(\delta))=0$  for  $\delta>0$ . This means that we may assume that all  $I^j(\delta)$  are single G-orbits. The dimension of every orbit does not exceed dim  $\operatorname{GL}(\delta)-1$ . We have dim  $\underline{R}=\dim\operatorname{GL}(\delta)$ . So we see that  $I^0(\delta)$  is dense in  $\underline{R}$ . Also a dimension count shows that a generic orbit in  $I^0(\delta)$  has to have dimension dim  $\operatorname{GL}(\delta)-1$ . The stabilizer of every representation is connected (it is an open subset in the space of all endomorphisms of the representation). So we see that the stabilizer of a generic representation in  $I^0(\delta)$  is forced to coincides with  $\mathbb{C}^\times$ , the kernel of the  $\operatorname{GL}(\delta)$ -action.

Recall from Section 15.3, that the components of  $\mu^{-1}(0)$  are the closures of the conormal bundles to some locally closed subsets  $I^k \subset I(k\delta + \epsilon_\infty, \delta, \ldots, \delta) \subset \operatorname{Rep}(\underline{Q}^{CM}, n\delta + \epsilon_\infty)$  with  $m(I^k) = n$ . We will now present such subsets. Namely, let  $\underline{x}_1, \ldots, \underline{x}_n$  be pairwise distinct indecomposable elements from  $\operatorname{Rep}(\underline{Q}^{MK}, \delta)$  with stabilizer  $\mathbb{C}^\times$ . Such representations exist thanks to the previous lemma. Choose a decomposition  $\bigoplus_{i \in \underline{Q}_0^{MK}} \mathbb{C}^{n\delta_i} = (\bigoplus_{i \in \underline{Q}_0^{MK}} \mathbb{C}^{\delta_i})^{\oplus n}$ . Then we can view  $\underline{x} := \bigoplus_{j=1}^n \underline{x}_j$  as an element of  $\operatorname{Rep}(\underline{Q}^{MK}, n\delta)$ . Also we have the induced decomposition of the space  $\mathbb{C}^n$  sitting at the vertex 0 into the direct sum of one-dimensional subspaces. Let  $e_1, \ldots, e_n$  be a basis compatible with this decomposition. To get an element of  $\operatorname{Rep}(\underline{Q}^{CM}, n\delta + \epsilon_\infty)$  from an element of  $\operatorname{Rep}(\underline{Q}^{MK}, n\delta)$  we need to add an element of  $\mathbb{C}^n$ . Set  $I^k := \{\underline{x}, i := \sum_{\ell=1}^k i_\ell e_\ell | i_1 \ldots i_k \neq 0 \}$ , where  $\underline{x}$  is as above. The stabilizer of  $\underline{x}$  in G is  $\mathbb{C}^{\times n} \hookrightarrow \operatorname{GL}(\delta)^{\times n} \hookrightarrow G = \operatorname{GL}(n\delta)$ . So the stabilizer of  $(\underline{x}, i) \in I^k$  is  $\mathbb{C}^{\times (n-k)}$ , the last n-k copies of  $\mathbb{C}^\times$  in  $\mathbb{C}^{\times n}$ . We need to show that the stabilizer in  $\mathbb{C}^{\times (n-k)}$  of a generic point of the fiber in  $(\underline{x}, i)$  of the conormal bundle to  $G(\underline{x}, i)$  is trivial.

The space  $\mathfrak{g}(\underline{x},i) = T_x G(\underline{x},i)$  admits an epimorphism onto  $\mathfrak{g}\underline{x}$  with kernel  $\mathfrak{g}\underline{x}i$ . Clearly,  $\mathfrak{g}\underline{x}i = \operatorname{Span}(e_1,\ldots,e_k)$ . So the conormal space to the orbit  $G(\underline{x},i)$  naturally surjects onto  $(\mathbb{C}^n/\operatorname{Span}(e_1,\ldots,e_k))^*$ . The action of  $(\mathbb{C}^\times)^{n-k}$  on the latter space is faithful and so it is faithful on the whole conormal space implying, in particular, that the stabilizer of a generic point is trivial.