LECTURES ON SYMPLECTIC REFLECTION ALGEBRAS

IVAN LOSEV

4. Deformed preprojective algebras

Recall that we have introduced the double McKay quiver Q, its representation space $\operatorname{Rep}(Q,\delta)$ acted on by the group $\operatorname{GL}(\delta)$ and also a somewhat mysterious quadratic map $\mu: \operatorname{Rep}(Q, \delta) \to \mathfrak{gl}(\delta)$. We have claimed that $\mathbb{C}^2/\Gamma \cong \mu^{-1}(0)//\operatorname{GL}(\delta)$.

For this we have realized \mathbb{C}^2/Γ as a "moduli space" for certain representations of $\mathbb{C}[x,y]\#\Gamma$. Namely, we considered the variety $\operatorname{Rep}_{\Gamma}(\mathbb{C}[x,y]\#\Gamma,\mathbb{C}\Gamma)$ of all representations of $\mathbb{C}[x,y]\#\Gamma$ whose restriction to $\mathbb{C}\Gamma$ is the representation by left multiplications. A few remarks about this choice are in order.

First, it is not necessary to fix an isomorphism of a representation of $\mathbb{C}[x,y]\#\Gamma$ with $\mathbb{C}\Gamma$, it is enough to consider all representations of $\mathbb{C}[x,y]\#\Gamma$ whose restriction to $\mathbb{C}\Gamma$ is isomorphic to the regular representation. In this case the symmetry group becomes bigger, $GL(\mathbb{C}\Gamma)$, and is no longer identified with $GL(\delta)$, but the "moduli space" (=the space parameterizing the representations) remains the same.

Second, let us explain why we choose to consider the representations in $\mathbb{C}\Gamma$ and not in some other Γ -module V. The reason is that if $\mathbb{C}\Gamma \not\hookrightarrow_{\Gamma} V$, then x,y act by 0 act on all simple $\mathbb{C}[x,y]\#\Gamma$ -modules entering V (this follows from the classification of the irreducible $\mathbb{C}[x,y]\#\Gamma$ -modules performed last time) and so we do not get an interesting moduli space.

To prove an isomorphism $\mathbb{C}^2/\Gamma \cong \mu^{-1}(0)//\operatorname{GL}(\delta)$, it remains to do two steps: to show that $\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle\#\Gamma,\mathbb{C}\Gamma)$ with $\operatorname{Rep}(Q,\delta)$ and to show that the condition $\varphi(xy-yx)=0$ on $\varphi \in \operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle \#\Gamma,\mathbb{C}\Gamma)$ is equivalent to $\mu(\varphi) = 0$ (we do not prove the promised equality of $\varphi \mapsto \varphi(xy - yx)$ and μ , it is a subtle question, in what sense this equality holds).

4.1. Step 2. We need an alternative way to look at the representations from $\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle\#\Gamma,\mathbb{C}\Gamma)$. On any such representation, a Γ -action is already given and so we only need to specify the actions of x, y. To give such an action is the same as to give a linear map $\mathbb{C}^2 \otimes \mathbb{C}\Gamma \to \mathbb{C}\Gamma$ (where we view x, y as a basis in \mathbb{C}^2).

Exercise 4.1. A map $\mathbb{C}^2 \otimes \mathbb{C}\Gamma \to \mathbb{C}\Gamma$ extends to an action of $\mathbb{C}\langle x,y\rangle \#\Gamma$ if and only if it is Γ -equivariant.

So the representations we are interested in are parameterized by the points in the vector space $\operatorname{Hom}_{\Gamma}(\mathbb{C}^2 \otimes \mathbb{C}\Gamma, \mathbb{C}\Gamma)$. The Γ -module $\mathbb{C}\Gamma$ is decomposed as $\bigoplus_{i=0}^r N_i \otimes N_i^*$, where Γ acts on the left factors and so, choosing bases in the spaces N_i^* , $i = 0, \ldots, r$, we identify $\mathbb{C}\Gamma$ with $\bigoplus_{i=0}^r N_i^{\oplus \delta_i}$. We set $M_{ij} := \operatorname{Hom}_{\Gamma}(\mathbb{C}^2 \otimes N_i, N_j)$ so that $m_{ij} := \dim M_{ij}$.

2 IVAN LOSEV

Exercise 4.2. Show that

$$\operatorname{Hom}_{\Gamma}(\mathbb{C}^{2} \otimes \mathbb{C}\Gamma, \mathbb{C}\Gamma) = \bigoplus_{i,j=0}^{r} M_{ij} \otimes \operatorname{Hom}_{\mathbb{C}}(N_{i}^{*}, N_{j}^{*})$$
$$= \bigoplus_{i,j=0}^{r} \operatorname{Hom}_{\mathbb{C}}(N_{i}^{*}, N_{j}^{*})^{\oplus m_{ij}} = \bigoplus_{i,j=0}^{r} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^{\delta_{i}}, \mathbb{C}^{\delta_{j}})^{m_{ij}}.$$

Note that the first equality is canonical, the second depends on the choice of a basis in M_{ij} , while the third depends on the choice of bases in N_i^* .

We recall that, with one exception, the space M_{ij} are always one or zero dimensional and so a basis vector is defined uniquely up to proportionality. The exception is $\Gamma = \mathbb{Z}/2\mathbb{Z}$, here M_{12} is two dimensional. We will ignore this exception.

The previous exercise implies that the space of representations of $\mathbb{C}\langle x,y\rangle\#\Gamma$ is nothing else but $\text{Rep}(Q,\delta)$.

If we decompose $\mathbb{C}\Gamma$ as $\bigoplus_{i=0}^r N_i^{\delta_i}$, then (using the Schur lemma) we see that $\mathrm{GL}(\mathbb{C}\Gamma)^{\Gamma} = \prod_{i=0}^r \mathrm{GL}(N_i^*) = \mathrm{GL}(\delta) := \prod_{i=0}^r \mathrm{GL}(\delta_i)$ (where the first equality is canonical, while the second is not) and, under our identification of $\mathrm{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle\#\Gamma,\mathbb{C}\Gamma)$ with $\mathrm{Rep}(Q,\delta)$, the $\mathrm{GL}(\mathbb{C}\Gamma)^{\Gamma}$ -action on the former becomes the $\mathrm{GL}(\delta)$ -action on the latter.

So our conclusion is that the semisimple representations in $\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle\#\Gamma,\mathbb{C}\Gamma)$ are parameterized up to an isomorphism by the points of $\operatorname{Rep}(Q,\delta)//\operatorname{GL}(\delta)$.

That's what we need on Step 2. But actually, in order to accomplish Step 3 of our original program, we will need some ramifications of Step 2.

4.2. **Path algebras.** As in the case of a group or a Lie algebra, a representation of a quiver Q is the same as a module over a certain algebra. This algebra is called the path algebra of Q, is denoted by $\mathbb{C}Q$ and is constructed as follows. For a basis in $\mathbb{C}Q$ we will take all paths in Q, i.e., all sequences of arrows $p = (a_1, \ldots, a_k)$ such that $h(a_1) = t(a_2), \ldots, h(a_{k-1}) = t(a_k)$. We set $t(p) := t(a_1), h(p) = h(a_k)$ and we say that p has length k. We also include empty paths $\epsilon_i, i \in Q_0$, with $t(\epsilon_i) = h(\epsilon_i) := i$. By definition, the product p_1p_2 of two pathes p_1, p_2 is zero if $h(p_2) \neq t(p_1)$ and is the concatenation of p_1 and p_2 else. For example, the path algebra of the Jordan quiver is the polynomial algebra in one variable. Another example: take the Dynkin quiver of type A_2 , i.e, the quiver with two vertices, 1 and 2, and a single arrow a with t(a) = 1, h(a) = 2. The path algebra is three dimensional, its basis is $\epsilon_1, \epsilon_2, a$ and the only nonzero products are $\epsilon_1^2 = \epsilon_1, \epsilon_2^2 = \epsilon_2, a\epsilon_1 = a, \epsilon_2 a = a$.

Exercise 4.3. Show that $\mathbb{C}Q$ is associative and $\sum_{i \in Q_0} \epsilon_i$ is a unit in $\mathbb{C}Q$. Further, show that, as a unital associative algebra, $\mathbb{C}Q$ is generated by $\epsilon_i, i \in Q_0$, and $a \in Q_1$ subject to the relations $\epsilon_i \epsilon_j = \delta_{ij} \epsilon_i, \sum_{i \in Q_0} \epsilon_i = 1, \epsilon_i a = \delta_{ih(a)} a, a \epsilon_i = \delta_{it(a)} a$.

If (V_i, x_a) is a representation of Q, then the space $V = \bigoplus_i V_i$ is equipped with a unique $\mathbb{C}Q$ -module structure such that ϵ_i acts by the projection to the summand V_i and a acts by x_a . Conversely, to a $\mathbb{C}Q$ -module U one assigns a representation of Q with $V_i = \epsilon_i U$.

Finally, let us remark that the algebra $\mathbb{C}Q$ is graded, $\mathbb{C}Q = \bigoplus_{i=0}^{+\infty} (\mathbb{C}Q)^i$, with $(\mathbb{C}Q)^i$ being the linear span of all pathes with length i.

4.3. $\mathbb{C}Q$ vs $\mathbb{C}\langle x,y\rangle\#\Gamma$. Now we are going to relate $\mathbb{C}Q$ for the (doubled) McKay quiver Q to $\mathbb{C}\langle x,y\rangle\#\Gamma$. For this we will realize both as tensor algebras.

Namely, if we have an associative algebra A and its bimodule M, we can form the tensor products $M^{\otimes n} := M \otimes_A M \otimes_A \ldots \otimes_A M$ and hence also the tensor algebra $T_A(M) = \bigoplus_n M^{\otimes n}$. This algebra has a usual universal property.

To represent $\mathbb{C}\langle x,y\rangle\#\Gamma$ in this form we will take $A=\mathbb{C}\Gamma$ and $M:=\mathbb{C}^2\otimes\mathbb{C}\Gamma$, where the left A-action comes from the Γ -module structure on $\mathbb{C}^2\otimes\mathbb{C}\Gamma$, while the right action is by right multiplications on the second factor.

To represent $\mathbb{C}Q$ in this form we take $A = (\mathbb{C}Q)^0 \cong \mathbb{C}^{Q_0}$ and $M = (\mathbb{C}Q)^1$, the span of all arrows with the bimodule structure coming from Exercise 4.3.

Exercise 4.4. Use the universal properties of all algebras involved to show that $\mathbb{C}\langle x,y\rangle\#\Gamma\cong T_{\mathbb{C}\Gamma}(\mathbb{C}^2\otimes\mathbb{C}\Gamma)$ and $\mathbb{C}Q\cong T_{(\mathbb{C}Q)^0}(\mathbb{C}Q)^1$.

A relation between the algebras $\mathbb{C}\langle x,y\rangle\#\Gamma$ and $\mathbb{C}Q$ is as follows: there is an idempotent $f\in\mathbb{C}\Gamma$ such that $\mathbb{C}Q=f\mathbb{C}\langle x,y\rangle\#\Gamma f$. To prove this we will need to examine an interplay between the constructions of spherical subalgebras and of tensor algebras.

Now suppose that A is an arbitrary associative algebra and that $e \in A$ is an idempotent. Then we can form the spherical subalgebra eAe. The space Ae has commuting actions of A on the left and eAe on the right. We have a functor $\pi : A\operatorname{-Mod} \to eAe\operatorname{-Mod}$ that sends M to eM. On the other hand, consider a functor $\pi^!$ in the opposite direction given by $\pi^!(N) = Ae \otimes_{eAe} N$.

Exercise 4.5. • Show that π is an exact functor, that π can be written as $M \mapsto eA \otimes_A M$, and that π ! is left adjoint to π .

- Suppose that AeA = A. Check the that if $\pi(M) = 0$, then M = 0. Further check that the natural homomorphism $Ae \otimes_{eAe} eM \to M$ is surjective. Finally, show that $Ae \otimes_{eAe} eM \to M$ is injective by applying π .
- Deduce that $Ae \otimes_{eAe} eA = A$ as bimodules.

The previous exercise shows that the categories of modules for A and for eAe are equivalent. In this case one says that the algebras A and eAe are Morita equivalent (or that e induces a Morita equivalence).

Our goal now is to find an idempotent $f \in \mathbb{C}\langle x,y \rangle \# \Gamma$ such that $\mathbb{C}Q \cong f\mathbb{C}\langle x,y \rangle \# \Gamma f$. Recall that $\mathbb{C}\Gamma = \bigoplus_{i \in Q_0} \operatorname{End}(N_i^*)$. Pick a primitive idempotent (a.k.a. diagonal matrix unit) $f_i \in \operatorname{End}(N_i)$ and set $f := \sum_{i \in Q_0} f_i$. Then, obviously, $\mathbb{C}\Gamma f\mathbb{C}\Gamma = \mathbb{C}\Gamma$ and $f\mathbb{C}\Gamma f = \mathbb{C}^{Q_0}$. Let us compute $f(\mathbb{C}^2 \otimes \mathbb{C}\Gamma)f$. For this we will need to understand the structure of the bimodule $\mathbb{C}^2 \otimes \mathbb{C}\Gamma$ over the algebra $\mathbb{C}\Gamma = \bigoplus_{i \in Q_0} \operatorname{End}(N_i^*)$. We have $\mathbb{C}^2 \otimes \mathbb{C}\Gamma = \bigoplus_{i \in Q_0} \mathbb{C}^2 \otimes N_i \otimes N_i^*$, where the left action of Γ is on the first two factors, while the right action is on the third factor. Further, $\mathbb{C}^2 \otimes N_i = \bigoplus_j M_{ij} \otimes N_j$, where Γ acts trivially on the first factor. So $\mathbb{C}^2 \otimes \mathbb{C}\Gamma = \bigoplus_{ij} M_{ij} \otimes N_j \otimes N_i^* = \bigoplus_{ij} M_{ij} \operatorname{Hom}(N_j^*, N_i^*)$. The space $\operatorname{Hom}(N_j^*, N_i^*)$ has a natural left action of $\operatorname{End}(N_i^*)$ and a natural right action of $\operatorname{End}(N_j^*)$ that gives the structure of a $\bigoplus_{i \in Q_0} \operatorname{End}(N_i^*)$ -bimodule on $\mathbb{C}^2 \otimes \mathbb{C}\Gamma$. So $f_{j'} \operatorname{Hom}(N_i^*, N_j^*) f_{i'} = \delta_{ii'} \delta_{jj'} \mathbb{C}$ and we get $f(\mathbb{C}^2 \otimes \mathbb{C}\Gamma) f = \bigoplus_{ij} M_{ij} = (\mathbb{C}Q)^1$.

The following exercise implies that $f(\mathbb{C}\langle x,y\rangle\#\Gamma)f=\mathbb{C}Q$.

Exercise 4.6. Suppose e is an idempotent in A such that AeA = A. Show that the functor $M \mapsto eMe$ is an equivalence between the categories of A and eAe-bimodules intertwining the tensor products (meaning that $e(M \otimes_A N)e = eMe \otimes_{eAe} eNe$). Deduce that $eT_A(M)e$ is naturally identified $T_{eAe}(eMe)$.

IVAN LOSEV

4

Now we can revisit the identification $\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle\#\Gamma,\mathbb{C}\Gamma)\cong\operatorname{Rep}(Q,\delta)$. The latter is the representation space of $\mathbb{C}Q$ in $\bigoplus_{i\in Q_0}N_i^*$. The isomorphism is induced by the map $M\mapsto fM$, where $f\in\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle\#\Gamma,\mathbb{C}\Gamma)$.

4.4. **Deformed preprojective algebras.** The identification of $\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x,y\rangle\#\Gamma,\mathbb{C}\Gamma)$ with $\operatorname{Rep}(Q,\delta)$ (as well as the isomorphism $f(\mathbb{C}\langle x,y\rangle\#\Gamma)f\cong\mathbb{C}Q$) depended on the choice of bases in the spaces N_i^* and also on the choice of bases in the spaces M_{ij} . We are going to prove that the condition that $\varphi(xy-yx)=0$ is equivalent to $\mu(\varphi)=0$ (under a suitable choice of a basis in M_{ij}).

In fact, we will prove a stronger result. Namely, recall the algebra $H_c = \mathbb{C}\langle x,y\rangle \#\Gamma/(xy-yx-c)_{\mathbb{C}\langle x,y\rangle \#\Gamma}$, where $c \in (\mathbb{C}\Gamma)^{\Gamma}$. Here and below the superscript $\mathbb{C}\langle x,y\rangle \#\Gamma$ after the brackets means that we take the two-sided ideal in $\mathbb{C}\langle x,y\rangle \#\Gamma$ generated by the element(s) in brackets. The algebra fH_cf is a quotient of $f(\mathbb{C}\langle x,y\rangle \#\Gamma)f=\mathbb{C}Q$ by the ideal $f(xy-yx-c)_{\mathbb{C}\langle x,y\rangle \#\Gamma}f$ and the question is how to describe the ideal explicitly. The answer is due to Crawley-Boevey and Holland and is as follows.

For $\lambda = (\lambda_i)_{i \in Q_0}$, define the deformed preprojective algebra Π^{λ} by as the quotient of $\mathbb{C}Q$ by the relations

(1)
$$\sum_{a \in Q_1, t(a)=i} a^* a - \sum_{a \in Q_1, h(a)=i} a a^* - \lambda_i \epsilon_i = 0,$$

one for each $i \in Q_0$. Below we will write $[a^*, a]_i$ for $\sum_{a \in Q_1, t(a)=i} a^* a - \sum_{a \in Q_1, h(a)=i} a a^*$.

Theorem 4.1. With a suitable choice with of bases in M_{ij} , the ideal f(xy - yx - c)f is generated by the $[a^*, a]_i - \lambda_i \epsilon_i$, where $\lambda_i := \operatorname{tr}_{N_i}(c)$.

In particular, xy - yx acts trivially on $M \in \operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x, y \rangle \#\Gamma, \mathbb{C}\Gamma)$ if and only if M is annihilated by the ideal $(xy - yx)_{\mathbb{C}\langle x, y \rangle \#\Gamma}$ if and only if $fM \in \operatorname{Rep}(Q, \delta)$ is annihilated by $f(xy - yx)_{\mathbb{C}\langle x, y \rangle \#\Gamma}f$, i.e. by all elements $[a^*, a]_i \in \mathbb{C}Q$. By that element just acts by the operator $\mu_i \in \operatorname{End}(\mathbb{C}^{\delta_i})$.

4.5. **CBH lemma.** To prove Theorem 4.1 we will need a lemma from [CBH]. First, we need a concrete form of isomorphisms between $\operatorname{Hom}_{\Gamma}(\mathbb{C}^2 \otimes N_i, N_j)$ and $\operatorname{Hom}_{\Gamma}(N_i, \mathbb{C}^2 \otimes N_j)$. We view x, y as a basis in \mathbb{C}^2 , identifying \mathbb{C}^2 with its dual via the symplectic form ω given by $\omega(y, x) = 1 = -\omega(x, y)$. Further, let $\zeta := x \otimes y - y \otimes x \in \mathbb{C}^2 \otimes \mathbb{C}^2$. We can view ω as a map $\mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}$, and ζ as a map $\mathbb{C} \to \mathbb{C}^2 \otimes \mathbb{C}^2$. Both maps are Γ -equivariant if we view \mathbb{C} as the trivial module.

Let M, M' be Γ -modules. Take $\psi \in \operatorname{Hom}_{\Gamma}(M, \mathbb{C}^2 \otimes M')$. It gives rise to a map $1_{\mathbb{C}^2} \otimes \psi : \mathbb{C}^2 \otimes M \to \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes M'$. Then define $\psi^{\heartsuit} := (\omega \otimes 1_M) \circ (1_{\mathbb{C}^2} \otimes \psi) \in \operatorname{Hom}_{\Gamma}(\mathbb{C}^2 \otimes M, M')$. Conversely, we can map $\varphi \in \operatorname{Hom}_{\Gamma}(\mathbb{C}^2 \otimes M, M')$ to $(1_{\mathbb{C}^2} \otimes \varphi) \circ (\zeta \otimes 1_M) \in \operatorname{Hom}(M, \mathbb{C}^2 \otimes M')$.

Exercise 4.7. Check that the maps $\operatorname{Hom}(M, \mathbb{C}^2 \otimes M') \to \operatorname{Hom}(\mathbb{C}^2 \otimes M, M'), \psi \mapsto (\omega \otimes 1_M) \circ (1_{\mathbb{C}^2} \otimes \psi)$ and $\operatorname{Hom}(\mathbb{C}^2 \otimes M, M') \to \operatorname{Hom}(M, \mathbb{C}^2 \otimes M'), \varphi \mapsto (1_{\mathbb{C}^2} \otimes \varphi) \circ (\zeta \otimes 1_M)$ are inverse to each other.

The following claim is [CBH, Lemma 3.2].

Lemma 4.2. To each $a \in \underline{Q}_1$ one can associate $\eta_a \in \operatorname{Hom}_{\Gamma}(N_{t(a)}, \mathbb{C}^2 \otimes N_{h(a)}), \theta_a \in \operatorname{Hom}_{\Gamma}(N_{h(a)}, \mathbb{C}^2 \otimes N_{h(a)})$ that combine to form bases in the spaces $\operatorname{Hom}_{\Gamma}(N_i, \mathbb{C}^2 \otimes N_j)$ are all i, j and satisfy

(2)
$$\sum_{a \in \underline{Q}_1, t(a) = i} (1_{\mathbb{C}^2} \otimes \theta_a) \eta_a - \sum_{a \in \underline{Q}_1, h(a) = i} (1_{\mathbb{C}^2} \otimes \eta_a) \theta_a = \delta_i(\zeta \otimes 1_{N_i}),$$

(the equality of maps $N_i \to \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes N_i$) for all i.

There are two rather different cases: Γ is cyclic or Γ is non-cyclic. The difference is that in the second case Q is a tree, while in the first case Q is not.

Problem 4.8. Prove the CBH lemma in the cyclic case, assuming that the orientation on \underline{Q} is also cyclic. Hint: for x, y we can take Γ -eigenvectors.

The case when Γ is non-cyclic will be considered in the next lecture.

References

[CBH] W. Crawley-Boevey, M. Holland. *Noncommutative deformations of Kleinian singularities*. Duke Math. J. 92(1998), 605-635.