PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

10. Moment maps in algebraic setting

Exercise 10.1. Let A be a commutative algebra and B be a localization of A. Show that any bracket on A extends to a unique bracket on B.

Exercise 10.2. Show that the Poisson bracket on $\mathbb{C}[T^*X_0]$ can be characterized as follows: we have $\{f,g\} = 0, \{\xi,f\} = L_{\xi}f, \{\xi,\eta\} = [\xi,\eta] \text{ for } f,g \in \mathbb{C}[X_0], \xi,\eta \in \text{Vect}(X_0).$ Deduce that, with respect to the standard grading on $\mathbb{C}[T^*X_0] = S_{\mathbb{C}[X_0]}(\text{Vect}(X_0))$, the bracket has degree -1.

Exercise 10.3. Show that a G-equivariant map $\xi \mapsto H_{\xi}$ with $v(H_{\xi}) = \xi_X$ is automatically a Lie algebra homomorphism.

Exercise 10.4. Let μ, μ' be two moment maps, and X be connected. Then $\mu - \mu'$ is a constant map equal to some G-invariant element of \mathfrak{g}^{*G} .

Exercise 10.5. Prove that $\ker d_x \mu = \mathfrak{g} x^{\perp}$ and $\operatorname{im} d_x \mu = \mathfrak{g}_x^{\perp}$, where in the first equality the superscript \perp stands for the skew-orthogonal complement with respect to ω_x , and in the second case for the annihilator in the dual space; we write \mathfrak{g}_x for the Lie algebra of stabilizer G_x . Deduce that $d_x \mu$ is surjective if and only if G_x is discrete.

Exercise 10.6. Let $\mu: T^*X_0 \to \mathfrak{g}^*$ be the moment map. Show that $\mu^{-1}(0)$ is the union of conormal bundles to the G-orbits in X_0 .

Problem 10.1. Let G act on a vector space V with finitely many orbits. Show that G acts on V^* with finitely many orbits and exhibit a bijection between the two sets of orbits.

Problem 10.2. Let V be a symplectic vector space with form ω and let G act on V via a homomorphism $G \to \operatorname{Sp}(V)$. Show that this action is Hamiltonian with $H_{\xi}(v) = \frac{1}{2}\omega(\xi v, v)$.

Problem 10.3. This problem discusses symplectic forms on coadjoint orbits. Let G be an algebraic group. Pick $\alpha \in \mathfrak{g}^*$.

- (1) Equip $T_{\alpha}G\alpha$ with a form ω_{α} by setting $\omega_{\alpha}(\xi_{\alpha},\eta_{\alpha}) = \langle \alpha, [\xi,\eta] \rangle$. Prove that this is well-defined.
- (2) Show that ω_{α} extends to a unique G-invariant form on $G\alpha$ (the Kirillov-Kostant form) and that this form is symplectic. Further, show that the G-action on $G\alpha$ is Hamiltonian with moment map being the inclusion.
- (3) Let X be a homogeneous space for G equipped with a symplectic form ω such that the G-action is Hamiltonian with moment map μ . Show that the image of μ is a single orbit, say $G\alpha$, that μ is a locally trivial covering, and that ω is obtained as the pull-back of the Kirillov-Kostant form.