PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

12. CM SYSTEMS AND QUANTUM MECHANICS

Exercise 12.1. Show that the trajectories for $H = \frac{1}{2}\operatorname{tr}(Y^2)$ on $R = T^*\operatorname{Mat}_n(\mathbb{C})$ are of the form (X - tY, Y).

Problem 12.1. Prove part (2) of the main theorem (integration of the CM system) in Lecture 11.

Problem 12.2. Check that the symplectic forms on $\tilde{\mu}^{-1}(E)//\tilde{G}$ and $\mu^{-1}(O)//G$ (see the notation in the lecture notes) are the same.

Exercise 12.2. Show that the algebra $D_{\hbar}(X_0)$ is a deformation of $\mathbb{C}[T^*X_0]$ compatible with the usual bracket there. Hint: how does the sheaf $D_{\hbar}(X_0)$ on X_0 behave under étale base changes?

Exercise 12.3. Let \mathcal{A}_{\hbar} be a $\mathbb{Z}_{\geqslant 0}$ -graded $\mathbb{C}[\hbar]$ -algebra with \hbar being of positive degree. Let \mathcal{A}'_{\hbar} be the \hbar -adic completion of \mathcal{A}_{\hbar} . Explain how to recover \mathcal{A}_{\hbar} back from \mathcal{A}'_{\hbar} using some natural action of \mathbb{C}^{\times} on \mathcal{A}'_{\hbar} .

Exercise 12.4. Let X_0 be a smooth affine variety acted freely by a finite group Γ . Equip $D_{\hbar}(X_0)$ with a natural Γ -action by $\mathbb{C}[\hbar]$ -algebra automorphisms and then identify $D_{\hbar}(X_0)^{\Gamma}$ with $D_{\hbar}(X_0/\Gamma)$.

¹This exercise and the next problem already appeared in Pset 11