PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

15. QUOTIENT SINGULARITIES AS QUIVER VARIETIES

The purpose of this problem set is to recover results of Lecture 15 in the special case of $\Gamma_1 = \{1\}.$

Problem 15.1. Describe the GL(n)-orbits on $Mat_n(\mathbb{C}) \oplus \mathbb{C}^n$. Deduce that there are n+1 components in $\mu^{-1}(0)$ and that they all have codimension n^2 .

As in the correction to the lecture, we show that $\mu^{-1}(0)$ is reduced. So $\mu^{-1}(0)//G$ is a variety.

Problem 15.2. This problem establishes a bijective morphism $\psi: \mathbb{C}^{2n}/\mathfrak{S}_n \to \mu^{-1}(0)//G$.

- (1) Let $A, B \in \operatorname{Mat}_n(\mathbb{C})$ be such that $\operatorname{rk}[A, B] \leq 1$. Show that, in some basis, A, B are upper triangular.
- (2) Deduce that any irreducible representation of $\Pi^0(Q^{CM})$ is actually a one-dimensional representation of $\Pi^0(Q^{MK})$.
- (3) Use this to produce a required morphism.

It remains to show that ψ^* is isomorphism of algebras.

Problem 15.3. Show that $\mathbb{C}[x_1,\ldots,x_n,y_1,\ldots,y_n]^{\mathfrak{S}_n}$ is generated by the polynomials of the form $\sum_{i=1}^n (x_i+ty_i)^n$. Deduce that ψ^* is surjective and, using this, that ψ^* is an isomorphism.