PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

17. Procesi bundles and their deformations

Problem 17.1. Let X be an algebraic variety, \mathcal{F}_0 be a coherent sheaf on X and \mathcal{D} be a FCS (=flat, complete and separated) deformation of \mathcal{O}_X over $\mathbb{C}[[\hbar]]$.

- (1) Show that the category of finitely generated modules (i.e., sheaves) over $\mathcal{D}/(\hbar^n)$ has enough injective objects. How are the injectives for different n related?
- (2) Show that if $\operatorname{Ext}^2(\mathcal{F}_0, \mathcal{F}_0) = 0$, then there exists a flat deformation of \mathcal{F}_0 to a right module \mathcal{F}_n over $\mathcal{D}/(\hbar^{n+1})$. Moreover, show that these deformations may be chosen in a compatible way and so give rise to a FCS deformation \mathcal{F} of \mathcal{F}_0 to a right module over \mathcal{D} .
- (3) Finally, show that if $\operatorname{Ext}^1(\mathcal{F}_0, \mathcal{F}_0) = 0$, then all the deformations above are unique.

Exercise 17.1. Let V_1, V_2 are $\mathbb{C}[[\mathfrak{z}^*, \hbar]]$ -modules that are flat, complete and separated. Let $\iota: V_1 \to V_2$ be a $\mathbb{C}[[\mathfrak{z}^*, \hbar]]$ -module homomorphism that is an isomorphism modulo (\mathfrak{z}, \hbar) . Show that ι is an isomorphism.

Exercise 17.2. Show that any fiber of a Procesi bundle is isomorphic to $\mathbb{C}\Gamma_n$ as a Γ_n -module.

Problem 17.2. Show that the dual of a Procesi bundle is again a Procesi bundle.

Exercise 17.3. Let A_0 be a $\mathbb{Z}_{\geqslant 0}$ -graded vector space and A be its FCS deformation over $\mathbb{C}[[x_1,\ldots,x_n]]$. Equip A with a \mathbb{C}^{\times} -action such that $t.(x_ia)=t^2x_it.a$ and the projection $A \twoheadrightarrow A_0$ is \mathbb{C}^{\times} -equivariant (where the action of \mathbb{C}^{\times} on the ith component of A_0 is by $t\mapsto t^i$). Show that the \mathbb{C}^{\times} -finite part of A is a graded deformation of A_0 over $\mathbb{C}[x_1,\ldots,x_n]$.

¹Also appeared last time