PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

2. CBH algebras

- **Exercise 2.1.** Let $\varphi : \mathcal{A} \to \mathcal{A}'$ be an algebra epimorphism. Suppose \mathcal{A} is filtered. Check that $\mathcal{A}'^{\leq n} := \varphi(\mathcal{A}^{\leq n})$ defines an algebra filtration on \mathcal{A}' .
- **Problem 2.1.** Show that the monomials $x^i y^j$, $i, j \ge 0$, form a basis of the Weyl algebra $W_2 = \mathbb{C}\langle x, y \rangle / (xy yx 1)$. For this, construct a representation of W_2 on $\mathbb{C}[x]$.
- **Exercise 2.2.** Check that the product on the associated graded gr \mathcal{A} of a filtered algebra \mathcal{A} is associative and has a unit.
- **Exercise 2.3.** Let A be a graded algebra. Take a two-sided ideal $I \subset A$ and let $\operatorname{gr} I$ denote the span of the top degree parts of elements of I. Show that $\operatorname{gr} I$ is a two-sided ideal of A and identify $\operatorname{gr}(A/I)$ with $A/\operatorname{gr} I$.
- **Problem 2.2.** Establish natural isomorphisms $R_h(\mathcal{A})/hR_h(\mathcal{A}) \cong \operatorname{gr} \mathcal{A}$, $R_h(\mathcal{A})/(h-\alpha)R_h(\mathcal{A}) \cong \mathcal{A}$, where $\alpha \in \mathbb{C} \setminus \{0\}$. Also check that $R_h(\mathcal{A})$ is flat over $\mathbb{C}[h]$.
- **Problem 2.3.** Let A be a commutative associative algebra without zero divisors equipped with an action of a finite group Γ by automorphisms. We assume that the action is faithful meaning that only the unit acts trivially. Check that the map $a \mapsto a \otimes 1$ identifies A^{Γ} with the center of $A \# \Gamma$.
- **Problem 2.4.** Show that if $\operatorname{gr}(\mathbb{C}\langle x,y\rangle\#\Gamma/(xy-yx-c))=\mathbb{C}[x,y]\#\Gamma$, then c lies in the center of $\mathbb{C}\Gamma$ (that is equal to $(\mathbb{C}\Gamma)^{\Gamma}$, the invariants for the adjoint action).
- **Exercise 2.4.** Deduce gr $eH_ce = \mathbb{C}[x,y]^{\Gamma}$ from gr $H_c = \mathbb{C}[x,y]\#\Gamma$ (i.e., show that taking the spherical subalgebra commutes with taking the associated graded).
- **Problem 2.5.** Let Γ be the group $\mathbb{Z}/(r+1)\mathbb{Z}$. We write $x,y \in H_c$ for the images of $x,y \in \mathbb{C}\langle x,y \rangle \#\Gamma$.
 - 1) Show that H_c is \mathbb{Z} -graded with Γ in degree 0, x in degree 1 and y in degree -1.
- 2) We can write c as $\sum_{\gamma \in \Gamma} c_{\gamma} \gamma$. Produce an element $h \in (H_c)^{\leq 2}$ that commutes with Γ and satisfies $[h, x] = c_1 x$, $[h, y] = -c_1 y$ (such an element is defined uniquely up to adding a constant provided $c_1 \neq 0$).
- 3) Set $x_1 := eh, x_2 := ex^{r+1}, x_3 := ey^{r+1}$. Check that there are polynomials P, Q in one variable of degree r+1 such that $x_2x_3 = P(x_1), x_3x_2 = Q(x_1)$ in eH_ce . How are these polynomials related? Express their coefficients via the coefficients c_{γ} .
- 4) Use gr $eH_ce = \mathbb{C}[x,y]^{\Gamma}$ to show that $eH_ce = \mathbb{C}\langle x_1, x_2, x_3 \rangle / ([x_1, x_2] = (r+1)c_1x_2, [x_1, x_3] = -(r+1)c_1x_3, x_2x_3 = P(x_1), x_3x_2 = Q(x_1)).$
- **Exercise 2.5.** Prove that there are no non-constant invariant polynomials for the action of the one-dimensional torus \mathbb{C}^{\times} on \mathbb{C}^n given by $t.(x_1, \ldots, x_n) = (tx_1, \ldots, tx_n)$.
- Exercise 2.6. Use the theorem (the only statement called this way in the lecture) to show that the closure of any orbit of a reductive group action on an affine variety contains a unique closed orbit.

Problem 2.6. Show that the algebra of invariants $\mathbb{C}[X]^G$, where $X = \operatorname{Mat}_n(\mathbb{C})$ and $G = \operatorname{GL}_n(\mathbb{C})$ acts on X by conjugations, is generated by the coefficients of the characteristic polynomial of a matrix and is isomorphic to the algebra of polynomials in n variables. A hint: consider the restriction to the subspace of diagonal matrices.

Problem 2.7. In the setting of the previous problem, check directly that every fiber indeed contains a single closed orbit and that this orbit consists of diagonalizable matrices.