PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

2. CBH ALGEBRAS (LEFT FROM LAST TIME)

Exercise 2.5. Prove that there are no non-constant invariant polynomials for the action of the one-dimensional torus \mathbb{C}^{\times} on \mathbb{C}^n given by $t.(x_1,\ldots,x_n)=(tx_1,\ldots,tx_n)$.

Exercise 2.6. Use the theorem (the only statement called this way in the lecture) to show that the closure of any orbit of a reductive group action on an affine variety contains a unique closed orbit.

Problem 2.6. Show that the algebra of invariants $\mathbb{C}[X]^G$, where $X = \operatorname{Mat}_n(\mathbb{C})$ and $G = \operatorname{GL}_n(\mathbb{C})$ acts on X by conjugations, is generated by the coefficients of the characteristic polynomial of a matrix and is isomorphic to the algebra of polynomials in n variables. A hint: consider the restriction to the subspace of diagonal matrices.

Problem 2.7. In the setting of the previous problem, check directly that every fiber indeed contains a single closed orbit and that this orbit consists of diagonalizable matrices.

3. McKay correspondence upgraded

Exercise 3.1. Show that if the $GL_N(\mathbb{C})$ -orbit of a representation in $Rep(\mathcal{A}, N)$ is closed, then the representation is semisimple.

Problem 3.1. Use the Hilbert-Mumford criterium to show that the orbit of a semisimple representation is closed.

Exercise 3.2. Show that the stabilizer in Γ of any nonzero point in \mathbb{C}^2 is trivial.

Exercise 3.3. A map $\mathbb{C}^2 \otimes \mathbb{C}\Gamma \to \mathbb{C}\Gamma$ extends to a representation from $\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x, y \rangle \#\Gamma, \mathbb{C}\Gamma)$ if and only if it is Γ -equivariant.

Exercise 3.4. Set $M_{ij} := \operatorname{Hom}_{\Gamma}(\mathbb{C}^2 \otimes \mathbb{C}\Gamma, \mathbb{C}\Gamma)$. Show that

$$\operatorname{Hom}_{\Gamma}(\mathbb{C}^2 \otimes \mathbb{C}\Gamma, \mathbb{C}\Gamma) = \bigoplus_{i,j=0}^r M_{ij} \otimes \operatorname{Hom}_{\mathbb{C}}(N_i^*, N_j^*) = \bigoplus_{i,j=0}^r \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^{\delta_i}, \mathbb{C}^{\delta_j})^{m_{ij}}.$$