Lecture 3

- 1) Completions of quantizations
- 2) Quantum slices.
- 3") Finite W-algebras

10) Motivations.

In symplectic/Poisson C-geometry we have a number of local structure results. The most basic result is the Darboux theorem: I point in a symplectic manifold M has a neighborhood symplectomorphic to a neighborhood of 0 in TmM. There's no such description for Poisson manifolds but one has a partial result: for a point m in a Poisson manifold M we can consider a symplectic leaf L through m: the lows where we can get from m using Hamiltonian flow. Then a small transverse slice S to L at m has a Poisson structure s.t. I neighborhoods UCM, U.C.L of m s.t. U~U.xS as Poisson monifolds.

We want an analog of these claims for quantitations & in

the algebraic setting, where we are forced to work w. formal neighborhoods so we need to discuss completions for formal quantitations.

1) Completions of quantizations

Let A be a Poisson algebra/C & mcA be a maximal ideal Then the completion $\hat{A} = \lim_{n \to \infty} A/m^n$ has a unique Poisson bracket extended from A by continuity. Assume A is Noetherian. Now suppose \mathcal{A}_{L} is a formal quantization of A. Let m_{L}

denote the preimage of m in \mathcal{A}_{t} (in particular, $t \in M_{t}$), a maximal 2-sided ideal. Then we can form the inverse limit:

Fact: \hat{A}_{h} is a formal quantitation of \hat{A} .

Remark on proof: The only nontrivial claim here is that \hat{A}_{h} is flat over C[[h]]. This is because M_{h} satisfies the Artin-Rees lemma, which follows from move general results in Non-commutative algebra (Exer 19, § 3.5, in Rowen's "Ring theory, Vol 1).

Remarks: 1) Suppose A is graded, M is a homogeneous ideal \$ It is a graded. Then $\hat{\mathcal{H}}_{t}$ is strictly speaking not a graded formal quantitation (even \hat{A} is not a graded algebra). But we have compatible gradings on the quotients $\mathcal{H}_{t}/\mathcal{M}_{h}^{k}$, cf. the definition of grading on \mathcal{H}_{t} .

2) If A is finitely gen'd & m corresponds to a smooth point, then \hat{A} is the algebra of formal series $\mathbb{C}[[(m/m^2)^*]]$. One should view $\hat{\mathcal{H}}$ as the space $\mathbb{C}[[(m/m^2)^*]][[th]]$ w. deformed product.

2) Quantum slices

Let A, m be as in the beginning of the previous section. It's convenient for us to consider a slightly different version of quantitation A_{\pm} : we assume that $[S_{\pm}, S_{\pm}] \subset h^2 A_{\pm}$. For $a, b \in A_{\pm}$, set $\{c, b\} := \frac{1}{h^2} [a, b]$. This is not a Poisson bracket on A_{\pm} (it's not commutative) but it's a Lie bracket & $\{a, \cdot\}$ is a derivation $\forall a \in A_{\pm}$. We assume that $\{:, \cdot\}$ on A is induced by $\{:, \cdot\}$ on A_{\pm} .

Set \widetilde{V} := M/M^2 , then f; f induces a skew-symmetric form W on \widetilde{V} : $\{a+M^2, b+M^2\}$:= $\{a,6\}+M$. Pick a complement $V\subset\widetilde{V}$ to the vadical of W.

Let \hat{m}_1 & \hat{m} denote the mexideels in $\hat{\mathcal{H}}_1$, \hat{A} . Consider the composition $\mathcal{H}: \hat{m}_1 \longrightarrow \hat{m} \longrightarrow \hat{m}/m^2 = V$

Theorem (quantum slice): 3 c: V -> mg s.t.

- 1) TOL= id
- 3) Let \mathcal{H}_{t} denote the centralizer of $\mathcal{L}(V)$ in $\hat{\mathcal{H}}_{t}$. Then the multiplication homomorphism $\hat{\mathcal{W}}_{t}(V) \otimes_{\mathcal{L}(I,t)} \mathcal{H}_{t} \longrightarrow \hat{\mathcal{H}}_{t}$ extends to an isomorphism $\hat{\mathcal{W}}_{t}(V) \otimes_{\mathcal{L}(I,t)} \mathcal{H}_{t} \longrightarrow \hat{\mathcal{H}}_{t}$, where in the source we have the completed tensor product: the usual tensor product of two topological algebras has a natural

topology & we complete w.r.t. that topology.

Idea of proof:

Let $x, y \in V$ be s.t. $\omega(x,y) = 1$. We inductively construct lifts $x_{\kappa}, y_{\kappa} \in \hat{M}_{t}$ s.t. $\{x_{\kappa}, y_{\kappa}\} - 1 \in \hat{M}_{t}^{\kappa}$ $\{x_{\kappa}, y_{\kappa} - x_{\kappa}, y_{\kappa} - y_{\kappa} \in \hat{M}_{t}^{\kappa+1}\}$. Take arbitrary x_{κ}, y_{κ} in preimages of x, y_{κ} . For the inductive step we use:

Observation: \forall section $i: \hat{\mathcal{H}}_{k}/\hat{m}_{k}^{\kappa} \to \hat{\mathcal{H}}_{k}/\hat{m}_{k}^{\kappa+1}$ of the natural projection, we have $\{x_{\kappa}, y_{\kappa} : \text{im } i\} = \hat{\mathcal{H}}_{k}/\hat{m}_{k}^{\kappa}$. Same if we swap X_{κ}, y_{κ} .

Using this observation we can do the following:

· Construct x_{x}, y_{x} and hence their limits $\hat{x}, \hat{y} \in \hat{h}_{t}$ w. $\{\hat{x}, \hat{y}\} = 1$.

Let \mathcal{A}_{t}^{1} denote the centralizer of \hat{x}, \hat{y} in $\hat{\mathcal{A}_{t}}$. Then an analog of (3) works for the completed Weyl algebra generated by \hat{x}, \hat{y} & the centralizer of \hat{x}, \hat{y} in $\hat{\mathcal{A}_{t}}$.

Once this is done we can argue by induction on dim V. D

Remarks: 1) Similar ideas lead to the following: for any 2 embeddings C_1, C_2 as in the theorem $\exists f \in \hat{\mathcal{H}}_1$

• $ad(f)^{k}a \rightarrow 0 + a \in \hat{\mathcal{H}}$ (where $ad(f) = \{f, g\}$)

· $\exp(\{f,\cdot\}) = c_2$.

In this way It, the quantum slice, is well-defined (i.e. independent from the choice of c)

2) Assume It, is graded & $m \in A$ is homogeneous, deg t=1. Then (can be chosen to be C^* -equivariant. In particular, It acquires a C^* -action.

3) Finite W-algebras

We want to apply the theorem in the following situation. Let of be a s/simple Lie algebre. We identify of with of* via the Killing form. Pick a nilpotent element eeof (recall that being nilpotent means that it is represented by a

nilpotent operator in any equivalently some faithful representation). We take $A = S(o_j) = \mathbb{C}[o_j *] \ \& \ m$ to be the maximal ideal of $e \in o_j (\cong o_j *)$.

The filtered quantitation we consider is $\Re := U(\sigma)$ but with the doubled filtration: $\Re := U(\sigma)_{\leq [i/2]}$ so that of is in deg 2. (reasons for this will be mentioned later)

So $R_{\downarrow}(\Re) = T(\sigma)[\hbar]/(x \otimes y - y \otimes x - \hbar^{2}[x,y])$ w. deg $\hbar = 1$ & \Re_{\downarrow} is the \hbar -adic completion of this algebra.

indeed homogeneous. For this grading however deg f; 3 = -2, which is why we work with the modified version of quanti-Zation above.

We can then form the algebra $\hat{\mathcal{H}}_{t}$ w. \mathbb{C}^{*} -action and apply the graded version of the theorem getting an algebra $\hat{\mathcal{H}}_{t}$ also with action of \mathbb{C}^{\times} Note that to has degree 1 & for the maximal ideal $\hat{\mathcal{H}}_{t}' \subset \hat{\mathcal{H}}_{t}'$ we have (by part (3) of $\hat{\mathcal{H}}_{t}$) that $\hat{\mathcal{H}}_{t}'/\hat{\mathcal{H}}_{t}'^{2} \simeq \hat{\mathcal{V}}/\mathcal{V} \oplus \mathbb{C}^{*} = \sigma_{f}/\mathcal{L}_{g}$, $f \ni \oplus \mathbb{C}^{*}$. This space is positively graded

Important exercise: Let $\mathcal{U}_{t} \subset \mathcal{S}_{t}'$ be the graded subalgebra $\mathcal{W}_{t} = \bigoplus_{i \in \mathcal{I}_{t}} \mathcal{W}_{t,i}$ w. $\mathcal{W}_{t,i} = \varprojlim_{\kappa} (\mathcal{S}_{t}'/m_{t}'^{\kappa})_{i}$. Show that $\mathcal{W}_{t} = \mathcal{W}_{t}/h \mathcal{W}_{t} \xrightarrow{\sim} S(\tilde{V}/V)$ as graded algebra

· It is the completion of his at a

The filtered algebra $W:=W_{h}/(h-1)$ is called the finite W-algebra. It should be thought of as the filtered quantization of C[S], where S=e+rev(alf) is the Slodowy

luce, a transverse slue to Ge (for suitable grading &	
Poisson structure on C[S], the grading is similar to what	ł
vas explained above).	